本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AUC.Precision.Recall以及F-measure 二分类问题的预测结果可能正确,也可能不正确.结果正确存在两种可能:原本对的预测为对,原本错的预测为错:结果错误也存在两种可能:原本对的预测为错,原本错的预测为对,如Fig 1左侧所示.其中Positives代表预测是对的,Negatives…
这里介绍一下如题所述的四个概念以及相应的使用python绘制曲线: 参考博客:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculation-by-Python/?utm_source=tuicool&utm_medium=referral 一般我们在评判一个分类模型的好坏时,一般使用MAP值来衡量,MAP越接近1,模型效果越好: 更详细的可参考:http://www.cnblogs.com/pinard/p/5993450.ht…
ROC曲线 ROC曲线是二元分类器中常用的工具,它的全称是 Receiver Operating Characteristic,接收者操作特征曲线.它与precision/recall 曲线特别相似,但是它画出的是true positive rate(recall的另一种叫法)对应false positive rate (FPR)的图.FPR是“负实例”(negative instances) 被错误地分类成“正实例”(positive)的比率.它等同于 1 减去true negative ra…
之前介绍了这么多分类模型的性能评价指标(<分类模型的性能评价指标(Classification Model Performance Evaluation Metric)>),那么到底应该选择哪些指标来评估自己的模型呢?答案是应根据应用场景进行选择. 查全率(Recall):recall是相对真实的情况而言的:假设测试集里面有100个正类,如果模型预测出其中40个是正类,那模型的recall就是40%.查全率也称为召回率,等价于灵敏性(Sensitivity)和真正率(True Positive…
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来衡量分类型模型准确度的工具.通俗点说,ROC与AUC是用来回答这样的问题的: 分类模型的预测到底准不准确? 我们建出模型的错误率有多大?正确率有多高? 两个不同的分类模型中,哪个更好用?哪个更准确? 一句话概括版本: ROC是一条线,如果我们选择用ROC曲线评判模型的准确性,那么越靠近左上角的ROC…
评估分类器性能的度量,像混淆矩阵.ROC.AUC等 内容概要¶ 模型评估的目的及一般评估流程 分类准确率的用处及其限制 混淆矩阵(confusion matrix)是如何表示一个分类器的性能 混淆矩阵中的度量是如何计算的 通过改变分类阈值来调整分类器性能 ROC曲线的用处 曲线下面积(Area Under the Curve, AUC)与分类准确率的不同   1. 回顾¶ 模型评估可以用于在不同的模型类型.调节参数.特征组合中选择适合的模型,所以我们需要一个模型评估的流程来估计训练得到的模型对于…
文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 AUC计算 3.4 理解AUC的意义 3.4.1 从Mann-Whitney U test角度理解 3.4.2 从AUC计算公式角度理解 3.4.3 一句话介绍AUC 3.5 为什么用AUC 3.6 AUC的一般判断标准 1.背景 很多学习器是为测试样本产生一个实值或概率预测(比如比较简单的逻辑回…
转自:http://baike.baidu.com/link?url=_H9luL0R0BSz8Lz7aY1Q_hew3JF1w-Zj_a51ggHFB_VYQljACH01pSU_VJtSGrGJOR1h_du8O0S2ADOzzq9Nqq   受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve).得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,…
原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注意本文针对二元分类器!) 1.混淆矩阵 True Positive(真正,TP):将正类预测为正类的数目 True Negative(真负, TN):将负类预测为负类的数目 False Positive(假正,FP):将负类预测为正类的数目(Type I error) False Negative(…
背景   之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道.最近做OD的任务迫在眉睫,所以仔细的研究了一下mAP的计算.其实说实话,mAP的计算,本身有很多现成的代码可供调用了,公式也写的很清楚,但是我认为仔细的研究清楚其中的原理更重要.   AP这个概念,其实主要是在信息检索领域(information retrieval)中的概念,所以这里会比较快速的过一下这个在信息…