CTR的贝叶斯平滑】的更多相关文章

参考论文: Click-Through Rate Estimation for Rare Events in Online Advertising 参考的博客: 1.https://jiayi797.github.io/2017/07/09/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E5%AE%9E%E8%B7%B5-%E8%BD%AC%E5%8C%96%E7%8E%87%E9%A2%84%E4%BC%B0%E4%B9%8B%E8%B4%9D%E5%8F%B6%E…
1. 背景介绍 广告形式: 互联网广告可以分为以下三种: 1)展示广告(display ad) 2)搜索广告(sponsored search ad) 3)上下文广告(contextual ad)   竞价模式: 对于在线广告,主要有以下几种竞价模式: 1)pay-per-impression(按展示付费):广告商按照广告被展示的次数付费,这是一种最普遍的竞价模型.缺点在于没有考虑投放广告的效果. 2)pay-per-action(按行为付费):只有在广告产生了销售或者类似的一些转化时,广告商才…
1. 前言 前面博客介绍了CTR预估中的贝叶斯平滑方法的原理http://www.cnblogs.com/bentuwuying/p/6389222.html. 这篇博客主要是介绍如何对贝叶斯平滑的参数进行估计,以及具体的代码实现. 首先,我们回顾一下前文中介绍的似然函数,也就是我们需要进行最大化的目标函数: 下面我们就基于这个目标函数介绍怎样估计参数. 2. 参数估计的几种方法 1. 矩估计 矩估计在这里有点乱入的意思:),因为它其实不是用来最大化似然函数的,而是直接进行参数的近似估计. 矩估…
1. 背景介绍 广告形式: 互联网广告可以分为以下三种: 1)展示广告(display ad) 2)搜索广告(sponsored search ad) 3)上下文广告(contextual ad)   竞价模式: 对于在线广告,主要有以下几种竞价模式: 1)pay-per-impression(按展示付费):广告商按照广告被展示的次数付费,这是一种最普遍的竞价模型.缺点在于没有考虑投放广告的效果. 2)pay-per-action(按行为付费):只有在广告产生了销售或者类似的一些转化时,广告商才…
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开课第五个视频的笔记,主要内容包括生成学习算法(generate learning algorithm).高斯判别分析(Gaussian DiscriminantAnalysis,GDA).朴素贝叶斯(Navie Bayes).拉普拉斯平滑(Laplace Smoothing).…
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶斯公式,计算出…
之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结.这里我们就从实战的角度来看朴素贝叶斯类库.重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择. 1. scikit-learn 朴素贝叶斯类库概述 朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单.相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握.在scikit-learn中,一共有3个朴素贝叶斯的分类算法类.分别是Gau…
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:52:10 今天的内容主要是: 1.贝叶斯网络和马尔科夫随机场的概念,联合概率分解,条件独立表示:2.图的概率推断inference. 图模型是用图的方式表示概率推理 ,将概率模型可视化,方便展示变量之间的关系,概率图分为有向图和无向图.有向图主要是贝叶斯网络,无向图主要是马尔科夫随机场.对两类图,prml都讲了如何将联合概率分解为条件概率,以及如何表示和判断条件依赖. 先说贝叶斯网络,贝叶斯网络是有向图,用节点表…
这是Hinton的第10课 这节课有两篇论文可以作为背景或者课外读物<Adaptive mixtures of local experts>和<Improving neural networks by preventing co-adaptation of feature detectors>. 一.为什么模型的结合是有帮助的 这部分将介绍为什么当我们进行预测的时候,想要将许多模型结合起来.如果我们只有一个模型,我们不得不对这个模型选择某些能力:如果我们选择的能力太少,那么模型可以…
(一)朴素贝叶斯多项式事件模型 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多种扩展,一种是在上一篇笔记中已经提到的每个分量的多值化,即将p(xi|y)由伯努利分布扩展到多项式分布:还有一种在上一篇笔记中也已经提到,即将连续变量值离散化.本文将要介绍一种与多元伯努利事件模型有较大区别的NB模型,即多项式事件模型(Multinomial Event Model,一下简称NB-M…