与FPGA相关的独热码】的更多相关文章

独热码在状态机里面使用比价广泛,这一块有些人爱用,有些人嫌烦,有时候可以用用格雷码跳转,不过格雷码只支持那种一步到底的,中间有分支就不好做了,所以后来还是回到了独热码的正道上. 说白了独热码的使用,在对状态判断时,会减少一级组合逻辑,关键路径上少一步,乍看没多少,用多了积累多了,还是一个很客观的数据的. 然后三段式状态机,状态跳转时一定记得要加上default,避免latch的产生.为了防止有时候不记得,在写状态机时不如上来就给其他情况先赋值. 调试技巧 FPGA设计,需要以数据流来推动,因此统…
前几天查了一些与独热编码相关的资料后,发现看不进去...看不太懂,今天又查了一下,然后写了写代码,通过自己写例子加上别人的解释后,从结果上观察,明白了sklearn中独热编码做了什么事. 下面举个例子解释一下: code: from sklearn.preprocessing import OneHotEncoder import numpy as np train = np.array([ [0, 1, 2], [1, 1, 0], [2, 0, 1], [3, 1, 1] ]) one_ho…
背景 接触tensorflow时,学习到mnist,发现处理数据的时候采取one-hot编码,想起以前搞FPGA状态机遇到过格雷码与独热码. 解析: 将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理. 比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取值. 不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3).两个工作之间的距离是,(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_…
学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别. 首先了解机器学习中的特征类别:连续型特征和离散型特征 拿到获取的原始特征,必须对每一特征分别进行归一化,比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].如果使用logistic回归,w1*x1+w2*x2,因为x1的取值太大了,所以x2基本起不了作用.所以,必须进行特征的归一化,每个特征都单独进行归一化. 对于连续性特征:…
https://www.imooc.com/article/35900 参考上面大神的原文,说的非常透彻.非常便于理解.感谢 感谢 自己做个小笔记,便于自己学习 特征值是离散的,无序的. 如: 性别特征:["男","女"] 祖国特征:["中国","美国,"法国"] 运动特征:["足球","篮球","羽毛球","乒乓球"] 假如某个样本(某…
原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "…
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet…
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male&q…
一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码 2.离散特征的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射{X:1,XL:2,XXL:3} 使用pandas可以很方便的对离散型特征进行one-hot编码 import pandas as pd df = pd.DataFrame([ ['green', '…
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet…