BZOJ 1977 严格次小生成树】的更多相关文章

树上倍增+kruskal 要找严格次小生成树,肯定先要找到最小生成树. 我们先把最小生成树的边找出来建树,然后依次枚举非树边,容易想到一种方式: 对于每条非树边(u,v),他会与树上的两个点构成环,我们在树上的两个点路径上找到最大值a和次大值b,如果非树边(u,v)的权值大于a,那么用mst-a+w(u,v) 如果非树边(u, v)的权值等于a,那么用mst-b+w(u,v) 枚举完所有非树边之后,最小值就是严格次小生成树 对于每个点路径的最大值和次大值,我们可以和LCA一样,用树上倍增的方式…
小C最近学了很多最小生成树的算法,Prim算法.Kurskal算法.消圈算法等等.正当小C洋洋得意之时,小P又来泼小C冷水了.小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值) \sum_{e \in E_M}value(e)<\sum_{e \in E_S}value(e)∑e∈EM​​value(e)<∑e∈ES​​value(e) 这下小…
做一次MST, 枚举不在最小生成树上的每一条边(u,v), 然后加上这条边, 删掉(u,v)上的最大边(或严格次大边), 更新答案. 树链剖分然后ST维护最大值和严格次大值..倍增也是可以的... ------------------------------------------------------------------------------ #include<bits/stdc++.h>   using namespace std;   #define b(i) (1 <&l…
话说这个[BeiJing2010组队]是个什喵玩意? 这是一道严格次小生成树,而次小生成树的做法是层出不穷的 MATO IS NO.1 的博客里对两种算法都有很好的解释,值得拥有:  (果然除我以外,所有自称傻 X 的都是神犇喵~) http://www.cppblog.com/MatoNo1/archive/2011/05/29/147627.aspx MATO还讲了一个神级复杂度的次小生成树:  (请全部读完.如果被坑,后果自负) http://www.cppblog.com/MatoNo1…
题意:求一棵树的严格次小生成树,即权值严格大于最小生成树且权值最小的生成树. 先求最小生成树,对于每个不在树中的边,取两点间路径的信息,如果这条边的权值等于路径中的权值最大值,那就删掉路径中的次大值,加上这条非树边,更新答案:否则删掉路径中的最大值,加上这条非树边,更新答案. #include<algorithm> #include<cstdio> #include<cmath> #include<cstring> #include<iostream&…
描述: 就是求一个次小生成树的边权和 传送门 题解 我们先构造一个最小生成树, 把树上的边记录下来. 然后再枚举每条非树边(u, v, val),在树上找出u 到v 路径上的最小边$g_0$ 和 严格次小边 $g_1$ 如果$val > g_0$就可以考虑把$g_0$ 替换成$val$ 并记录答案. 如果$val = g_0$ 就把$g_1$替换成$val$ 记录答案. 然后我们就需要快速求出树链上的最小和次小边, 需要用树上倍增求LCA类似的方法求. 定义$g[0][ i ][ j ]$ 表示…
Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说: 如果最小生成树选择的边集是 EM,严格次小生成树选择的边集是 ES,那么需要满足:(value(e) 表示边 e的权值) 这下小 C 蒙了,他找到了你,希望你帮他解决这个问题. Input 第一行包含两个整数N 和M,表示无向图的…
Description: 给定一张N个节点M条边的无向图,求该图的严格次小生成树.设最小生成树边权之和为sum,那么严格次小生成树就是边权之和大于sum的最小的一个 Input: 第一行包含两个整数N 和M,表示无向图的点数与边数. 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z. Output: 包含一行,仅一个数,表示严格次小生成树的边权和.(数据保证必定存在严格次小生成树) 思路:先求出原图的最小生成树,然后继续从小到大枚举边(x,y),对于x,y用倍…
1977: [BeiJing2010组队]次小生成树 Tree https://lydsy.com/JudgeOnline/problem.php?id=1977 题意: 求严格次小生成树,即边权和不能等于最小生成树. 分析: 倍增:求出最小生成树,然后枚举非树边,加入一条非树边,删掉环上的最大的边,如果最大的边等于加入的边,那么删掉环上次小的边. LCT:直接维护链上最大值,与次大值. 代码: 倍增 #include<bits/stdc++.h> using namespace std; t…
题意:求严格的次小生成树.点n<=100000,m<=300000 思路:很容易想到先做一边最小生成树,然后枚举每条非树边(u, v, w),然后其实就是把u,v路径上小于w的最大边替换成w,对于所有的这种新树取一个权值最小的即可.. 然后就变成求u,v的最大值及次大值..树链剖分和lct显然是可以做的.. 不过很早就知道倍增却一直没写过,今天就正好写一发.. code: /************************************************************…