康拓展开: $X=a_n*(n-1)!+a_{n-1}*(n-2)!+\ldots +a_2*1!+a_1*0!$ X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,a为整数,并且0<=ai<i(1<=i<=n) 这个式子就是康托展开,初看同排列没什么关系,实则不然.下面通过举个例子看一下 一.用康托展开判断一个排列是第几小的 以{1,2,3}为例.我们定义排列的顺序从小到大为123,132,213,231,312,3…
题目描述 求n的从小到大第m个全排列(n≤20). 输入 n和m 输出 输出第m个全排列,两个数之间有一空格. 样例输入 3 2 样例输出 1 3 2 #include<cstdio> #include<cstring> ,,,,,,,,,, ,,,, ,,, ,,, }; ]; void invKT(int ans[], int n, int k) { int i, j, t; memset(vis, , sizeof(vis)); k--; ; i< n;++i) { t…
康托展开 康托展开为全排列到一个自然数的映射, 空间压缩效率很高. 简单来说, 康托展开就是一个全排列在所有此序列全排列字典序中的第 \(k\) 大, 这个 \(k\) 即是次全排列的康托展开. 康托展开是这样计算的: 对于每一位, 累计除了前面部分, 字典序小于本位的排列总数, 即 LL cantor(){ LL ans = 0; for(LL i = 1;i <= num;i++){ LL cnt = 0; for(LL j = i + 1;j <= num;j++){ if(ask[j]…
一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!*...*Nn!), 然后就靠自己YY出解法,搞了好几天,最后向学长要了数据,然后迷迷糊糊调了,终于AC了. 后来才知道当时想的解法类似于逆康托展开,只是逆康托展开是对于没有重复元素全排列而言,不过有没有重复元素都一个样. 而现在做这题很顺,因为思路很清晰了,另外这做法和数论DP的统计部分有相似之处.…
题目:http://acm.hrbust.edu.cn/index.php?m=ProblemSet&a=showProblem&problem_id=2297 前置技能:(千万注意是从0开始数的 康托展开表示的是当前排列在n个不同元素的全排列中的名次.比如213在这3个数所有排列中排第3. 那么,对于n个数的排列,康托展开为: 其中表示第i个元素在未出现的元素中排列第几.举个简单的例子: 对于排列4213来说,4在4213中排第3,注意从0开始,2在213中排第1,1在13中排第0,3在…
如果在阅读本文之前对于康托展开没有了解的同学请戳一下这里:  简陋的博客    百度百科 题目描述 N(1<=N<=20)头牛,编号为1...N,正在与FJ玩一个疯狂的游戏.奶牛会排成一行(牛线),问FJ此时的行号是多少.之后,FJ会给牛一个行号,牛必须按照新行号排列成线. 行号是通过以字典序对行的所有排列进行编号来分配的.比如说:FJ有5头牛,让他们排为行号3,排列顺序为: 1:1 2 3 4 5 2:1 2 3 5 4 3:1 2 4 3 5 因此,牛将在牛线1 2 4 3 5中. 之后,…
UVA - 11525 Permutation 题意:输出1~n的所有排列,字典序大小第∑k1Si∗(K−i)!个 学了好多知识 1.康托展开 X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中a[i]为第i位是i往右中的数里 第几大的-1(比他小的有几个). 其实直接想也可以,有点类似数位DP的思想,a[n]*(n-1)!也就是a[n]个n-1的全排列,都比他小 一些例子 http://www.cnblogs.com/hxsyl…
描述: The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the permutations in order, We get the following sequence (ie, for n = 3): "123" "132" "213" "231" "312" &q…
我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl"12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的?   输入 第一行有一个整数n(0<n<=10000);随后有n行,每行是一个排列: 输出 输出一个整数m,占一行,m表示排列是第几位: 样例输入 3 abcdefghijkl hgebkflacdji gfkedhjblcia 样例输出 1 3027…
康托展开 简介:对于给定的一个排列,求它是第几个,比如54321是n=5时的第120个.(对于不是1~n的排列可以离散化理解) 做法: ans=a[n]*(n-1)!+a[n-1]*(n-2)!+~~~~a[1]*0!.(a[n]表示在给定的排列中,还没出现的,而且比当前值小的数的个数) 如果说对于一个数学定理你会熟练运用,也许已经足够了,但日后总感觉少点什么,好像做了亏心事一般,因为你没有底气去用它,因为你不知道它为什么是对的,所以证明是第一步. 1.证明:因为是按字典序排序,对于第x个位置数…