争夺 & KM思想】的更多相关文章

题意: 给一张二分图,每个点与两个特定点又一条边相连,边权非负,让你给这个二分图每个点一个顶标,让每一条边两端顶标和大于等于这条边.求出最小顶标和. 这当然是翻译过的题目... 原题: 小Y和小P无聊的时候就喜欢玩游戏,但是每次小P都输给了小Y.终于有一天,你看不过去了,决定帮小P一把. 游戏是这样的,一个N*M的棋盘(保证n或m中,至少有一个为偶数).相邻格子之间有一个给定的正整数权值.要你给这些格子填上一些值,使得相邻两个格子本身的权值之和,要大于等于他们之间给定的权值.并且要使得所有格子权…
题意: 有n个订单,m个工厂,第i个订单在第j个工厂生产的时间为t[i][j],一个工厂可以生产多个订单,但一次只能生产一个订单,也就是说如果先生产a订单,那么b订单要等到a生产完以后再生产,问n个订单用这m个工厂全部生产完需要最少的时间是多少. SOL: 与平时的带权二分图不同的是这个问题相当于一个多重匹配的问题,且每个点的权值需要考虑它之前的点,其实可以比如说每个工厂搞一个set什么的维护一下然后乱搞(不知道行不行看着好像挺好). 正这考虑不是很方便于是我们可以反着来,最后被生产的点只需要它…
这个算法的本质还是不断的找增广路: KM算法的正确性基于以下定理:若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配. 这个定理是显然的.因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和:如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和.所以相等子图的完备匹配一定是二分图的最大权匹配. (1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,l…
奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1836    Accepted Submission(s): 798 Problem Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子.这可是一件大事,关系到人民的住房问题啊.村里共有n间房间,刚好有n家老百姓,考虑到每…
原文:http://972169909-qq-com.iteye.com/blog/1184514 题目地址:这里. 1)求图中所有环的总长度(环的长度不唯一)的最小值.当无法得到完备匹配时说明环不存在. 第三题:http://acm.hdu.edu.cn/showproblem.php?pid=1853 直接建图,注意有重边哦! if (-c > w[a][b])     w[a][b] = -c; 当木有完美匹配输出-1 第四题:http://acm.hdu.edu.cn/showprobl…
KM算法一般用来寻找二分图的最优匹配. 步骤: 1.初始化可行标杆 2.对新加入的点用匈牙利算法进行判断 3.若无法加入新编,修改可行标杆 4.重复2.3操作直到找到相等子图的完全匹配. 各步骤简述: 1.根据二分图建立2个可行标杆; lx为x的可行标杆,初始化lx[i]为与i点相连的最大边 ly为y的可行标杆,初始化为0. 可行性的判断条件应为lx[x]+ly[y] >= Map[x][y]. 2.对于新加入的点用匈牙利算法经行判断,确定改点能否加入旧子图中,形成新子图. 对于该加入的点有两种…
今天也大致学了下KM算法,用于求二分图匹配的最佳匹配. 何为最佳?我们能用匈牙利算法对二分图进行最大匹配,但匹配的方式不唯一,如果我们假设每条边有权值,那么一定会存在一个最大权值的匹配情况,但对于KM算法的话这个情况有点特殊,这个匹配情况是要在完全匹配(就是各个点都能一一对应另一个点)情况下的前提. 自然,KM算法跟匈牙利算法有相似之处. 其算法步骤如下: 1.用邻接矩阵(或其他方法也行啦)来储存图,注意:如果只是想求最大权值匹配而不要求是完全匹配的话,请把各个不相连的边的权值设置为0. 2.运…
0.二分图 二分图的概念 二分图又称作二部图,是图论中的一种特殊模型. 设G=(V, E)是一个无向图.如果顶点集V可分割为两个互不相交的子集X和Y,并且图中每条边连接的两个顶点一个在X中,另一个在Y中,则称图G为二分图. 可以得到线上的driver与order之间的匹配关系既是一个二分图. 二分图的判定 无向图G为二分图的充分必要条件是,G至少有两个顶点,且其所有回路的长度均为偶数. 判断无向连通图是不是二分图,可以使用深度优先遍历算法(又名交叉染色法). 下面着重介绍下交叉染色法的定义与原理…
在二分图匹配中有最大匹配问题,使用匈牙利算法或者网络流相关算法解决,如果给每条边增加一个权值,求权值和最大的匹配方案就叫做最大权匹配问题.其实之前所说的最大匹配就是权值为1的最大权匹配. 求最大权完备匹配常用的方法是Kuhn-Munkres算法(简称KM算法),其主要思想就是通过顶标将求最大权匹配问题转化为求解最大匹配问题.算法的大致思路是任意构造一个可行顶标(比如Y结点顶标为0,X结点的顶标为它出发所有边的最大权值),然后求相等子图的最大匹配,如果存在完美匹配,算法终止,否则修改顶标使得相等子…
匈牙利算法转自于: https://blog.csdn.net/dark_scope/article/details/8880547 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法. -------等等,看得头大?那么请看下面的版本: 通过数代人的努力,你终于赶上了剩男剩女的大潮,假设你是一位光荣的新世纪媒人,在你的手上有N个剩男,…