首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
PRML读书会第八章 Graphical Models(贝叶斯网络,马尔科夫随机场)
】的更多相关文章
PRML读书会第八章 Graphical Models(贝叶斯网络,马尔科夫随机场)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:52:10 今天的内容主要是: 1.贝叶斯网络和马尔科夫随机场的概念,联合概率分解,条件独立表示:2.图的概率推断inference. 图模型是用图的方式表示概率推理 ,将概率模型可视化,方便展示变量之间的关系,概率图分为有向图和无向图.有向图主要是贝叶斯网络,无向图主要是马尔科夫随机场.对两类图,prml都讲了如何将联合概率分解为条件概率,以及如何表示和判断条件依赖. 先说贝叶斯网络,贝叶斯网络是有向图,用节点表…
隐马尔科夫模型(Hidden Markov Models)
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads133/doc/fileformat/568756/HMM-DL.pdf本文讲述了 HMM原理,方法,典型应用 http://www.cnblogs.com/tsingke/p/3923169.html HMM(隐马尔科夫模型)基本原理及其实现 http://wenku.baidu.com/lin…
隐马尔科夫模型(Hidden Markov Models) 系列之三
转自:http://blog.csdn.net/eaglex/article/details/6418219 隐马尔科夫模型(Hidden Markov Models) 定义 隐马尔科夫模型可以用一个三元组(π,A,B)来定义: π 表示初始状态概率的向量 A =(aij)(隐藏状态的)转移矩阵P(Xit|Xj(t-1))t-1时刻是j而t时刻是i的概率 B =(bij)混淆矩阵 P(Yi|Xj)在某个时刻因隐藏状态为Xj而观察状态为Yi的概率 值得注意的是,在状态转移矩阵中的每个概率都是时间无…
图模型的统计推断 inference in graphical models(马尔科夫链的推断)
有关因子图(factor graphs)以及其在sum product 算法,max-algorithm中的应用,将在一下篇博客中分享. 谢谢您的关注,欢迎提出意见问题.…
NLP | 自然语言处理 - 标注问题与隐马尔科夫模型(Tagging Problems, and Hidden Markov Models)
什么是标注? 在自然语言处理中有一个常见的任务,即标注.常见的有:1)词性标注(Part-Of-Speech Tagging),将句子中的每一个词标注词性,比如名词.动词等:2)实体标注(Name Entity Tagging),将句子中的特殊词标注,比如地址.日期.人物姓名等. 下图所看到的的是词性标注的案例,当输入一个句子时,计算机自己主动标注出每一个词的词性. 下图所看到的的是实体标注的案例,当输入一个句子时,计算机自己主动标注出特殊词的实体类别. 粗略看来.这并非一个简单问题.首先每一个…
隐马尔科夫模型(Hidden Markov Models) 系列之五
转自:http://blog.csdn.net/eaglex/article/details/6458541 维特比算法(Viterbi Algorithm) 找到可能性最大的隐藏序列 通常我们都有一个特定的HMM,然后根据一个可观察序列去找到最可能生成这个可观察序列的隐藏序列. 1.穷举搜索 我们可以在下图中看到每个状态和观察的关系. 通过计算所有可能的隐藏序列的概率,我们可以找到一个可能性最大的隐藏序列,这个可能性最大的隐藏序列最大化了Pr(observed sequence | hidde…
隐马尔科夫模型(Hidden Markov Models) 系列之四
转自:http://blog.csdn.net/eaglex/article/details/6430389 前向算法(Forward Algorithm) 一.如果计算一个可观察序列的概率? 1.穷举搜索 加入给定一个HMM,也就是说(,A,B)这个三元组已知,我们想计算出某个可观察序列的概率.考虑天气的例子,我们知道一个描述天气和海藻状态的HMM,而且我们还有一个海藻状态的序列.假设这个状态中的某三天是(dry,damp,soggy),在这三天中的每一天,天气都可能是晴朗,多云或者下雨,…
隐马尔科夫模型(Hidden Markov Models) 系列之二
转自:http://blog.csdn.net/eaglex/article/details/6385204 隐含模式(Hidden Patterns) 当马尔科夫过程不够强大的时候,我们又该怎么办呢? 在某些情况下马尔科夫过程不足以描述我们希望发现的模式.回到之前那个天气的例子,一个隐居的人可能不能直观的观察到天气的情况,但是有一些海藻.民间的传说告诉我们海藻的状态在某种概率上是和天气的情况相关的.在这种情况下我们有两个状态集合,一个可以观察到的状态集合(海藻的状态)和一个隐藏的状态(天气的状…
隐马尔科夫模型(Hidden Markov Models) 系列之一
转自:http://blog.csdn.net/eaglex/article/details/6376826 介绍(introduction) 通常我们总是对寻找某一段时间上的模式感兴趣,这些模式可能出现在很多领域:一个人在使用电脑的时候使用的命令的序列模式:一句话中的单词的序列:口语中的音素序列.总之能产生一系列事件的地方都能产生有用的模式. 考虑一个最简单的情况:有人(柯南?)试图从一块海藻来推断天气的情况.一些民间的传说认为“soggy”的海藻意味着潮湿(wet)的天气,“dry”的海藻预…
贝叶斯网络基础(Probabilistic Graphical Models)
本篇博客是Daphne Koller课程Probabilistic Graphical Models(PGM)的学习笔记. 概率图模型是一类用图形模式表达基于概率相关关系的模型的总称.概率图模型共分为三个部分,分别为表示理论,推理理论和学习理论.基本的概率图模型包括贝叶斯网络.马尔科夫网络和隐马尔科夫网络. Student Example 一个学生,拥有成绩.课程难度.智力.SAT的分.推荐信等变量. 通过一张图可以把这些变量的关系表示出来,可以想象成绩由课程难度和智力决定,SAT成绩由智力决定…