数据分析和建模方面的大量编程工作都是用在数据准备上的:载入.清理.转换以及重塑.有时候,存放在文件或数据库中的数据并不能满足你的数据处理应用的要求.很多人都选择使用通用编程语言(如Python.Perl.R或Java)或UNIX文本处理工具(如sed或awk)对数据格式进行专门处理.幸运的是,pandas和Python标准库提供了一组高级的.灵活的.高效的核心函数和算法,它们使你可以轻松地将数据规整化为正确的形式. 1.合并数据集 pandas对象中的数据能够通过一些内置的方式进行合并: pan…
Python之数据规整化:清理.转换.合并.重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来. pandas.concat可以沿着一条轴将多个对象堆叠到一起. 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值. 2. 数据风格的DataFrame合并操作 2.1 数据集的合并(merge)或连接(jion)运算时通过一个或多个键将行链接起来的.如果没有指定,merge就会将重叠列的列名当做键…
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章节知识图谱<利用Python进行数据分析>自学知识图谱-导航…
<利用Python进行数据分析>第七章的代码. # -*- coding:utf-8 -*-# <python for data analysis>第七章, 数据规整化 import pandas as pdimport numpy as npimport time start = time.time()# 1.合并数据集,有merge.join.concat三种方式# 1.1.数据库风格的dataframe合并(merge & join)# merge函数将两个dataf…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认分隔符 逗号 read_table 读取带分隔符的数据,默认分隔符 “\t” read_fwf 读取定宽.列格式数据(无分隔符) read_clipboard 读取剪贴板中的数据(将网页转换为表格) 1.1 读取excel数据 import pandas as pd import numpy as np fi…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 读取excel数据 import pandas as pd import numpy as np file = 'D:\example.xls' df = pd.DataFrame(pd.read_excel(file)) df 2 检测缺失值 2.1 isnull返回一个含有布尔值的对象 import pandas as pd import numpy as np file =…
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片.…
所有内容整理自<利用Python进行数据分析>,使用MindMaster Pro 7.3制作,emmx格式,源文件已经上传Github,需要的同学转左上角自行下载或者右击保存图片. 其他章节知识图谱<利用Python进行数据分析>自学知识图谱-导航…
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对象.其C语言编写的算法库可以操作内存而不必进行其他工作.比起内置序列,使用的内存更少(即时间更快,空间更少) numpy可以在整个数组上执行复杂的计算,而不需要借助python的for循环 4.0 前提知识 数据:结构化的数据代指所有的通用数据,如表格型,多维数组,关键列,时间序列等 相关包:numpy pa…