package com.bank.service; import java.io.IOException; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWrita…
1.Map端的Combiner. 通过单词计数WordCountApp.java的例子,如何在Map端设置Combiner... 只附录部分代码: /** * 以文本 * hello you * hello me * 为例子. * map方法调用了两次,因为有两行 * k2 v2 键值对的数量有几个? * 有4个.有四个单词. * * 会产生几个分组? * 产生3个分组. * 有3个不同的单词. * */ public class WordCountApp { public static voi…
先看网络上,博客经常出现的错误代码: for(ABatchAddCheckVO aBatchAddCheckVO : addList){ dto.put("aac001",aBatchAddCheckVO.getAac001());//设置人员编号 //由于sql语句使用union查询_sjql和ac4,如果2个表都有记录,就会存在重复,需要去重 List<Map> list = aFQService.getBatchAc5_SJQL(dto); //list数据去重——冒…
下午对着源码看陆喜恒. Hadoop实战(第2版)6.4.1  (Shuffle和排序)Map端,发现与Hadoop 1.2.1的源码有些出入.下面作个简单的记录,方便起见,引用自书本的语句都用斜体表示. 依书本,从MapTask.java开始.这个类有多个内部类: 从书的描述可知,collect()并不在MapTask类,而在MapOutputBuffer类,其函数功能是 1.定义输出内存缓冲区为环形结构2.定义输出内存缓冲区内容到磁盘的操作 在collect函数中将缓冲区的内容写出时会调用s…
Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各个年份(第15~19列)总排行前十的最高气温(第87~92列),由于博客园无法上传大文件的文本,因此我把该文本的内容放在博客园的另一个链接了(需要的戳我).,如果网页打不开的话也就可以去百度云盘里下载副本,链接:链接:https://pan.baidu.com/s/12aZFcO2XoegUGMAb…
map端的join算法,适用于小表join大表的时候,一次性把小表的数据全部装载到内存当中来: 代码: MapJoinMain: package cn.itcast.demo5.mapJoin; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.filecache.DistributedCache;import org.apac…
hadoop1.x和hadoop2.x的区别: Hadoop1.x版本: 内核主要由Hdfs和Mapreduce两个系统组成,其中Mapreduce是一个离线分布式计算框架,由一个JobTracker和多个TaskTracker组成. JobTracker的主要作用:JobTracker是框架的中心,接收任务,计算资源,分配资源,分配任务,与DataNode进行交流等功能.决策程序失败时 重启等操作.又当爹又当妈. TaskTracker同时监视当前机器上的task运行状况.TaskTracke…
一 介绍 之所以存在Reduce Join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中.Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输. Map Join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中.这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录…
Shuffle过程,也称Copy阶段.reduce task从各个map task上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定的阀值,则写到磁盘上,否则直接放到内存中. 官方的Shuffle过程如上图所示,不过细节有错乱,官方图并没有说明partition.sort和combiner具体作用于哪个阶段. 注意:Shuffle过程是贯穿于map和reduce两个过程的! Hadoop的集群环境,大部分的map task和reduce task是执行在不同的节点上的,那么reduce就要…
hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别需要消耗网络资源,它传输的数据量越少,对作业的运行时间越有意义,在这种情况下,我们可以对输出进行一个压缩.输出压缩之后,reducer就要接收,然后再解压,reducer处理完之后也需要做输出,也可以做压缩.对于我们程序而言,输入的压缩是我们原来的,不是程序决定的,因为输入源就是这样子,reduce…