xsank的快餐 » Python simhash算法解决字符串相似问题 Python simhash算法解决字符串相似问题…
SimHash算法 由于实验室和互联网基本没啥关系,也就从来没有关注过数据挖掘相关的东西.在实际工作中,第一次接触到匹配和聚类等工作,虽然用一些简单的匹配算法可以做小数据的聚类,但数据量达到一定的时候就束手无策了. 所以,趁着周末把这方面的东西看了看,做个笔记. 来历 google的论文“detecting near-duplicates for web crawling”--------simhash. Google采用这种算法来解决万亿级别的网页的去重任务. 基本思想 simhash算法的主…
搜集了快一个月的资料,虽然不完全懂,但还是先慢慢写着吧,说不定就有思路了呢. 开源的最大好处是会让作者对脏乱臭的代码有羞耻感. 当一个做推荐系统的部门开始重视[数据清理,数据标柱,效果评测,数据统计,数据分析]这些所谓的脏活累活,这样的推荐系统才会有救. 求教GitHub的使用. 简单不等于傻逼. 我为什么说累:我又是一个习惯在聊天中思考前因后果的人,所以整个大脑高负荷运转.不过这样真不好,学习学成傻逼了. 研一的最大收获是让我明白原来以前仰慕的各种国家自然基金项目,原来都是可以浑水摸鱼忽悠过去…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- <数据挖掘之道>摘录话语:虽然我比较执着于Rwordseg,并不代表各位看管执着于我的执着,推荐结巴分词包,小巧玲珑,没有那么多幺蛾子,而且R版本和python版本都有,除了词性标注等分词包必备功能以外,jiebaR还加入了一些基础的文本分析算法,比如提取关键字(TFIDF).分析文本相似性等等,真是老少咸宜. 同时官网也有一个在线jieba…
SimHash是什么 SimHash是Google在2007年发表的论文<Detecting Near-Duplicates for Web Crawling >中提到的一种指纹生成算法或者叫指纹提取算法,被Google广泛应用在亿级的网页去重的Job中,作为locality sensitive hash(局部敏感哈希)的一种,其主要思想是降维,什么是降维? 举个通俗点的例子,一篇若干数量的文本内容,经过simhash降维后,可能仅仅得到一个长度为32或64位的二进制由01组成的字符串,这一点…
引言:从斐波那契数列看动态规划 斐波那契数列:Fn = Fn-1 + Fn-2    ( n = 1,2     fib(1) = fib(2) = 1) 练习:使用递归和非递归的方法来求解斐波那契数列的第 n 项 代码如下: # _*_coding:utf-8_*_ def fibnacci(n): if n == 1 or n == 2: return 1 else: return fibnacci(n - 1) + fibnacci(n - 2) # 写这个是我们会发现计算f(5) 要算两…
SimHash原理 1.SimHash背景 SimHash算法来自于 GoogleMoses Charikar发表的一篇论文"detecting near-duplicates for web crawling" ,其主要思想是降维, 将高维的特征向量映射成低维的特征向量,通过两个向量的Hamming Distance(汉明距离)来确定文章是否重复或者高度近似. Hamming Distance: 又称汉明距离,在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的不同字符的个…
python 排序算法总结及实例详解 这篇文章主要介绍了python排序算法总结及实例详解的相关资料,需要的朋友可以参考下 总结了一下常见集中排序的算法 排序算法总结及实例详解"> 归并排序 归并排序也称合并排序,是分治法的典型应用.分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并. 具体的归并排序就是,将一组无序数按n/2递归分解成只有一个元素的子项,一个元素就是已经排好序的了.然后将这些有序的子元素进行合并. 合并的过程就是 对 两个已经排好序的子序列,先选取两个子序列…
Hey! 如果你还没有看这篇的上文的话,可以去稍稍瞅一眼,会帮助加速理解这一篇里面涉及到的递归结构哦!(上一篇点这里:<python实例:解决经典扑克牌游戏 -- 四张牌凑24点 (一)>) 如果你已经看完了第一部分的解析,那我们可以来继续上道题的第二部分. 根据第一部分的分析,第二部分的难点主要在以下两点: 第一题只需要考虑三个数字,两个符号的排列组合,也就是说在改变运算符号时,我们只需考虑4选1,或者4选2的情况.而第二题却需要完全不同的思路,要在不确定总数字量的情况下,在每两个数字间考虑…
这篇文章主要讲simHash算法.这是一种LSH(Locality-Sensitive Hashing,局部敏感哈希)的简单实现.它是广泛用于数据去重的算法,可以用于相似网站.图片的检索.而且当两个样本差别并不大时,算法仍能起效.值得一提的是,该算法的时空复杂度不存在与维度有关的项,所以不会遭遇维度灾难,也可以在维数较高时优化kNN算法. 特征 此算法(LSH)具有双重性,它们似乎是相悖的: 对于几组不同的特征,hash相同(即冲突)的可能性要尽可能小.这也是hash基本的特征. 对于几组相似的…