问题提出: 众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出.    在上述过程中,我们看到至少两个性能瓶颈:(引用) 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可.这样做不仅可以减轻网络压力,同样也可以大幅度提高程序效率. 使用专利中的国家一项来阐述数据…
转自:http://blog.csdn.net/jokes000/article/details/7072963 众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出. 在上述过程中,我们看到至少两个性能瓶颈: 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可.这…
hadoop的核心思想是MapReduce,但shuffle又是MapReduce的核心.shuffle的主要工作是从Map结束到Reduce开始之间的过程.首先看下这张图,就能了解shuffle所处的位置.图中的partitions.copy phase.sort phase所代表的就是shuffle的不同阶段. shuffle阶段又可以分为Map端的shuffle和Reduce端的shuffle. 一.Map端的shuffle Map端会处理输入数据并产生中间结果,这个中间结果会写到本地磁盘…
1.kafka的message包括哪些信息 一个Kafka的Message由一个固定长度的header和一个变长的消息体body组成 header部分由一个字节的magic(文件格式)和四个字节的CRC32(用于判断body消息体是否正常)构成. 当magic的值为1的时候,会在magic和crc32之间多一个字节的数据:attributes(保存一些相关属性, 比如是否压缩.压缩格式等等):如果magic的值为0,那么不存在attributes属性 body是由N个字节构成的一个消息体,包含了…
一.Combiner的出现背景 1.1 回顾Map阶段五大步骤 在第四篇博文<初识MapReduce>中,我们认识了MapReduce的八大步凑,其中在Map阶段总共五个步骤,如下图所示: 其中,step1.5是一个可选步骤,它就是我们今天需要了解的 Map规约 阶段.现在,我们再来看看前一篇博文<计数器与自定义计数器>中的第一张关于计数器的图: 我们可以发现,其中有两个计数器:Combine output records和Combine input records,他们的计数都是…
前言 前面的一篇给大家写了一些MapReduce的一些程序,像去重.词频统计.统计分数.共现次数等.这一篇给大家介绍的是关于Combiner优化操作. 一.Combiner概述 1.1.为什么需要Combiner 我们map任务处理的结果是存放在运行map任务的节点上. map处理的数据的结果在进入reduce的时候,reduce会通过远程的方式去获取数据. 在map处理完数据之后,数据量特别大的话.reduce再去处理数据它就要通过网络去获取很多的数据. 这样会导致一个问题是:大量的数据会对网…
在很多MapReduce应用的场景中,假设能在向reducer分发mapper结果之前做一下"本地化Reduce".一wordcount为样例,假设作业处理中的文件单词中"the"出现了574次,存储并shuffling一次("the",574)key/valuthe对照很多次("the",1)更有效. 这个过程叫做合并(Combiner). hadoop 通过扩展MapReduce框架,在mapper何reducer之间添加…
众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出. 在上述过程中,我们看到至少两个性能瓶颈: 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可.这样做不仅可以减轻网络压力,同样也可以大幅度提高程序效率. 使用专利中的国家一项来阐述数据倾斜这个定义.这样的数据远…
对combiner的理解 combiner其实属于优化方案,由于带宽限制,应该尽量map和reduce之间的数据传输数量.它在Map端把同一个key的键值对合并在一起并计算,计算规则与reduce一致,所以combiner也可以看作特殊的Reducer. 执行combiner操作要求开发者必须在程序中设置了combiner(程序中通过job.setCombinerClass(myCombine.class)自定义combiner操作). Combiner组件是用来做局部汇总的,就在mapTask…
在网上收集了一些mapreduce中常用的一些名词的解释,分享一下: Shuffle(洗牌):当第一个map任务完成后,节点可能还要继续执行更多的map 任务,但这时候也开始把map任务的中间输出交换到需要它们的 reducer那里去,这个移动map输出到 reducer 的过程叫做shuffle. Partition:每一个reduce节点会分派到中间输出的键集合中的一个不同的子集合,这些子集合(被称为“partitions”)是reduce任务的输入数据.每一个map任务生成的键值对可能会隶…