废话不多说,直接开始 1.首先,导入所需的模块: import numpy as np import os import tensorflow as tf 关闭tensorflow输出的一大堆硬件信息 os.environ[' 2.写一个函数generate_data(),用来生成我们所需要的数据,这里使用的线性函数是y = 0.1*x + 0.3,具体解释见注释 def generate_data():#随机生成测试数据 num_points = 1000 vector_set = [] fo…
首先通过构造随机数,模拟数据. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.3x+0.1的直线周围 num_points = 1000 vectors_set = [] for i in range(num_points): x1 = np.random.normal(0.0, 0.55) y1 = x1 * 0.3 + 0.1 + np.random…
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是一个连续的值. 实际上我们第一篇的房价预测就属于线性回归算法,如果把这个模型用于预测,结果是一个连续值而不是有限的分类. 从代码上讲,那个例子更多的是为了延续从TensorFlow 1.x而来的解题思路,我不想在这个系列的第一篇就给大家印象,TensorFlow 2.0成为了完全不同的另一个东西.在Tenso…
今天让我们一起来学习如何用TF实现线性回归模型.所谓线性回归模型就是y = W * x + b的形式的表达式拟合的模型. 我们先假设一条直线为 y = 0.1x + 0.3,即W = 0.1,b = 0.3,然后利用随机数在这条直线附近产生1000个随机点,然后利用tensorflow构造的线性模型去学习,最后对比模型所得的W和b与真实值的差距即可. (某天在浏览Github的时候,发现了一个好东西,Github上有一个比较好的有关tensorflow的Demo合集,有注释有源代码非常适合新手入…
思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点. 1)随机生成1000个数据点,围绕在y=0.1x+0.3 周围,设置W=0.1,b=0.3,届时看构建的模型是否能学习到w和b的值. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt num_points=1000 vectors_se…
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码给出相关的tensorflow的概念. 线性回归模型的表达式如下: 其中,是权重,是偏置,和则是输入数据和对应的模型预测值. 在tensorflow中,是用图来表示计算的形式的,图中的每个节点称为一个op(即operation),每个operation获得相关张量(Tensor)后进行数值计算,每个…
本文主要探索如何使用深度学习框架 MXNet 或 TensorFlow 实现线性回归模型?并且以 Kaggle 上数据集 USA_Housing 做线性回归任务来预测房价. 回归任务,scikit-learn 亦可以实现,具体操作可以查看 线性回归模型的原理与 scikit-learn 实现. 载入数据 import pandas as pd import numpy as np name = '../dataset/USA_Housing.csv' dataset = pd.read_csv(…
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署 TensorFlow 模型导出 使用 SavedModel 完整导出模型 不仅包含参数的权值,还包含计算的流程(即计算图) tf.saved_model.save(model, "保存的目标文件夹名称") 将模型导出为 SavedModel model = tf.saved_model.load("保存的目标文件夹名称") 载入 SavedModel 文件 因为 SavedModel…
上篇介绍了TensorFlow基本概念和基本操作,本文将利用TensorFlow举例实现线性回归模型过程. 线性回归算法 线性回归算法是机器学习中典型监督学习算法,不同于分类算法,线性回归的输出是整个实数空间R(故也可用线性回归做分类).关于线性回归网络资料很多,算法具体推演不做叙述,这里简要概括基本点. 目标函数y(不考虑噪声形式): 损失函数Loss:      求解方法梯度下降: TensorFlow实现 代码 #!/usr/bin/pyton import tensorflow as t…
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. 二.相关概念和安装 TensorFlow中的计算可以表示为一个有向图(DirectedGraph)或者称计算图(ComputationGraph)其中每一…