Image Inpainting with Learnable Bidirectional Attention Maps pytorch 引言 部分卷积(PConv)的缺陷: 1 将含有1个有效值像素的区域与含有9个有效值像素的区域同等对待 2 Partial convolution中,无效pixel将在深层中逐渐消失,从而将所有mask值逐渐转换为1.而且在Decoder部分不起作用. 3 PCONV只前向更新 基于PCONV的改进 网络框架 反向传播 损失函数…
Fully Convolutional Attention Localization Networks: Efficient Attention Localization for Fine-Grained Recognition   细粒度的识别(Fine-grained recognition)的挑战性主要来自于 类内差异(inter-class differences)在细粒度类别中通常是局部的,细微的:类间差异(intra-class differences)由于姿态的变换而导致很大.为了…
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LSTM and Answering Point Model 5: Bi…
A Survey of Visual Attention Mechanisms in Deep Learning 2019-12-11 15:51:59 Source: Deep Learning on Medium Visual Glimpses and Reinforcement Learning The first paper we will look at is from Google’s DeepMind team: “ Recurrent Models of Visual Atten…
目录 简介 经典模型概述 Model 1: Attentive Reader and Impatient Reader Attentive Reader Impatient Reader Model 2: Attentive Sum Reader Model 3: Stanford Attentive Reader Model 4: AOA Reader Model 5: Match-LSTM and Answering Point Match-LSTM Pointer Net Match-LS…
前言: 最近几年,注意力机制用来提升模型性能有比较好的表现,大家都用得很舒服.本文将介绍一种新提出的坐标注意力机制,这种机制解决了SE,CBAM上存在的一些问题,产生了更好的效果,而使用与SE,CBAM同样简单. 论文地址: https://arxiv.org/pdf/2103.02907.pdf 代码地址: https://github.com/AndrewQibin/CoordAttention Introduction 大部分注意力机制用于深度神经网络可以带来很好的性能提升,但这些注意力机…
最近在看 Faster RCNN的Matlab code,发现很多matlab技巧,在此记录: 1. conf_proposal  =  proposal_config('image_means', model.mean_image, 'feat_stride', model.feat_stride); function conf = proposal_config(varargin) % conf = proposal_config(varargin) % ------------------…
论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基于关键点模式进行目标检测是一种新的方法,他并不需要依赖于anchor boxes,是一种精简的检测网络,但需要大量的预处理才能得到较高的准确率.本文提出CornerNet-Lite,是CornerNet两种变形的组合,一个是CornerNet-Saccade,基于attention机制,从而并不需要…
Deep Attentive Tracking via Reciprocative Learning 2018-11-14 13:30:36 Paper: https://arxiv.org/abs/1810.03851 Project page: https://ybsong00.github.io/nips18_tracking/index Code: https://github.com/shipubupt/NIPS2018 是的,我跟好多人一样,被标题中的 “Reciprocative…
Concept Mask: Large-Scale Segmentation from Semantic Concepts 2018-08-21 11:16:07 Paper:https://arxiv.org/pdf/1808.06032.pdf 本文做了这么一件事:给定一张图片以及概念名词,输出其对应的分割结果,如下图所示: 具体来说,这个流程大致可以分为如下几个部分: 1. Embedding Network 来学习视觉特征和语义概念之间的对应关系:此时,我们可以得到一个粗糙的 atten…
Reading Comprehension(RC) 阅读理解对于机器来说, 是一项非常艰巨的任务.google提出QANet, 目前(2018 0505)一直是SQuAD的No. 1. 今天简单地与大家分享一下. SQuAD Stanford Question Answering Dataset (SQuAD) [1] 阅读理解理解数据集,包含100,000+ 的数据样本,采用众包的方式,对500+的 Wikipedia 文章进行处理,得到(Context, question, answer)…
Hierarchical Question-Image Co-Attention for Visual Question Answering NIPS 2016 Paper: https://arxiv.org/pdf/1606.00061.pdf Code: https://github.com/jiasenlu/HieCoAttenVQA Related Blog: [AI前沿]机器阅读理解与问答·Dynamic Co-Attention Networks Introduction: 本文提…
Multi-attention Network for One Shot Learning 2018-05-15 22:35:50  本文的贡献点在于: 1. 表明类别标签信息对 one shot learning 可以提供帮助,并且设计一种方法来挖掘该信息: 2. 提出一种 attention network 来产生 attention maps  for creating the image representation of an exemplar image in novel class…
转载请注明出处:https://www.cnblogs.com/White-xzx/ 原文地址:https://arxiv.org/abs/1702.05891 Caffe-code:https://github.com/zhufengx/SRN_multilabel 如有不准确或错误的地方,欢迎交流~ 空间正则化网络(Spatial Regularization Network, SRN),学习所有标签间的注意力图(attention maps),并通过可学习卷积挖掘标签间的潜在关系,结合正则…
两个预测kaggle比赛 一 .https://www.kaggle.com/c/web-traffic-time-series-forecasting/overview Arthur Suilin•(1st in this Competition)•a year ago•Options github:https://github.com/sjvasquez/web-traffic-forecasting   My model is basically RNN seq2seq (encoder+…
http://blog.csdn.net/appleml/article/details/78664824 在理解CRF的时候费了一些功夫,将一些难以理解的地方稍微做了下标注,隔三差五看看加强记忆, 代码是pytorch文档上的example import torch import torch.autograd as autograd import torch.nn as nn import torch.optim as optim def to_scalar(var): #var是Variab…
前言:译者实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享. 具体的数据格式,这种方式并不适合处理很多的数据,但是对于 demo 来说非常友好,把英文改成中文,标签改成分词问题中的 "BEMS" 就可以跑起来了. # Make up some training data training_data = [( "the wall street journal reported…
不错的 Tutorial: 从零到一学习计算机视觉:朋友圈爆款背后的计算机视觉技术与应用 | 公开课笔记 分享人 | 叶聪(腾讯云 AI 和大数据中心高级研发工程师) 整    理 | Leo 出    品 | 人工智能头条(公众号ID:AI_Thinker) 刚刚过去的五四青年节,你的朋友圈是否被这样的民国风照片刷屏?用户只需要在 H5 页面上提交自己的头像照片,就可以自动生成诸如此类风格的人脸比对照片,简洁操作的背后离不开计算机视觉技术和腾讯云技术的支持. 那么这个爆款应用的背后用到了哪些计…
论文名称:CenterNet: Keypoint Triplets for Object Detectiontection 论文链接:https://arxiv.org/abs/1904.08189 代码链接:https://github.com/Duankaiwen/CenterNet 简介 该论文是由中科院,牛津大学以及华为诺亚方舟实验室联合提出.截至目前(2019.04.19),CenterNet应该是one-stage目标检测方法中性能(精度)最好的方法. 传统的基于关键点的目标检测方法…
论文名称:CornerNet-Lite: Efficient Keypoint Based Object Detection 论文链接:https://arxiv.org/abs/1904.08900 代码链接:https://github.com/princeton-vl/CornerNet-Lite 简介 该论文与Cornernet论文作者相同,都是由普林斯顿大学的几位学者提出.截止2019年4月份,CornerNet-Lite 应该是目标检测(Object Detection)中速度和精度…
好久没有写博客了,这一次就将最近看的pytorch 教程中的lstm+crf的一些心得与困惑记录下来. 原文 PyTorch Tutorials 参考了很多其他大神的博客,https://blog.csdn.net/cuihuijun1hao/article/details/79405740 https://www.jianshu.com/p/97cb3b6db573 至于原理,非常建议读这篇英文博客,写的非常非常非常好!!!!!!值得打印出来细细品读!!!!!!!!!!!!!!!!!!!!!!…
好久没有写博客了,这一次就将最近看的pytorch 教程中的lstm+crf的一些心得与困惑记录下来. 原文 PyTorch Tutorials 参考了很多其他大神的博客,https://blog.csdn.net/cuihuijun1hao/article/details/79405740 https://www.jianshu.com/p/97cb3b6db573 至于原理,非常建议读这篇英文博客,写的非常非常非常好!!!!!!值得打印出来细细品读!!!!!!!!!!!!!!!!!!!!!!…
Abstract We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (eg, syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e. to model polysemy). 我们引入了一种新…
100篇必读的NLP论文 100 Must-Read NLP 自己汇总的论文集,已更新 链接:https://pan.baidu.com/s/16k2s2HYfrKHLBS5lxZIkuw 提取码:x7tn This is a list of 100 important natural language processing (NLP) papers that serious students and researchers working in the field should probabl…
笔记:Bridging the Gap Between Relevance Matching and Semantic Matching for Short Text Similarity Modeling 发表情况:EMNLP2019 发表作者:Jinfeng Rao FaceBook 模型提出:HCAN 摘要: 信息检索(IR)的核心问题是相关性匹配,即通过与用户查询的相关性来对文档进行排名.另一方面,可以将许多NLP问题(例如QA和PI)都可以视为语义匹配的变相问题,语义匹配用于测量两个短…
论文地址:在长短时记忆中学习内在的稀疏结构 论文代码:https://github.com/wenwei202/iss-rnns 引用格式:Wen W, He Y, Rajbhandari S, et al. Learning intrinsic sparse structures within long short-term memory[C]. nternational Conference on Learning Representations, 2018. 摘要 模型压缩对于递归神经网络…
注:博主是大四学生,翻译水平可能比不上研究人员的水平,博主会尽自己的力量为大家翻译这篇论文.翻译结果仅供参考,提供思路,翻译不足的地方博主会标注出来,请大家参照原文,请大家多多关照. 转载请务必注明出处,谢谢. 0. 译者序 题目翻译:基于内容感知生成模型的图像修复 介绍:这篇文章也被称作deepfill v1,作者的后续工作 "Free-Form Image Inpainting with Gated Convolution" 也被称为deepfill v2.两者最主要的区别是,v2…
One-Stage Inpainting with Bilateral Attention and Pyramid Filling Block 论文链接:https://arxiv.org/abs/1912.08642 源码地址:https://github.com/KumapowerLIU/One-Stage-Inpainting-with-Bilateral-Attention-and-Pyramid-Filling-Block 1. 引言 这篇论文解决的问题是图像修复(Image inpa…
That’s where the empathy map comes in. When created correctly, empathy maps serve as the perfect lean user persona: They quickly visualize user needs (especially to non-designers) They fit perfectly into a Lean UX workflow as a starting point for use…
注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分…