这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73743849),但我觉得直觉上的经验更有用,如下: 直觉上的经验: 一件确定的事: padding 无论取 'SAME' 还是取 'VALID', 它在 conv2d 和 max_pool 上的表现是一致的; padding = 'SAME' 时,输出并不一定和原图size一致,但会保证覆盖原图所有…
1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的feature_map, axes=[0, 1, 2] 对三个维度求平均,即每一个feature_map都获得一个平均值和标准差 2.with tf.control_dependencies([train_mean, train_var]): 即执行with里面的操作时,会先执行train_mean 和…
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import tensorflow as tf #T1法 tf.name_scope() with tf.name_scope("a_name_scope"): initializer = tf.constant_initializer(value=1) #定义常量 var1 = tf.get_variab…
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示标准差 代码:生成一个随机分布的值 #1. 创建一个正态分布的随机数 sess = tf.Session() x = tf.random_normal([2, 3], mean=-1, stddev=4) print(sess.run(x)) 2. np.random.shuffle(y) # 对数…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而言之,就是 tf.add(a, b) 与 a + b二者的区别,类似的也有,tf.assign 与 =(赋值运算符)的差异. 在计算精度上,二者并没有差别.运算符重载的形式a+b,会在内部转换为,a.__add__(b),而a.__add__(b)会再一次地映射为tf.add,在 math_ops.…
tensorflow中有很多需要变量共享的场合,比如在多个GPU上训练网络时网络参数和训练数据就需要共享. tf通过 tf.get_variable() 可以建立或者获取一个共享的变量. tf.get_variable函数的作用从tf的注释里就可以看出来-- 'Gets an existing variable with this name or create a new one'. 与 tf.get_variable 函数相对的还有一个 tf.Variable 函数,两者的区别是: tf.Va…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
1.  tf.split(3, group, input)  # 拆分函数    3 表示的是在第三个维度上, group表示拆分的次数, input 表示输入的值 import tensorflow as tf import numpy as np x = [[1, 2], [3, 4]] Y = tf.split(axis=1, num_or_size_splits=2, value=x) sess = tf.Session() for y in Y: print(sess.run(y))…
In order to train our model, we need to define what it means for the model to be good. Well, actually, in machine learning we typically define what it means for a model to be bad. We call this the cost, or the loss, and it represents how far off our…
tensorflow 在实现 Batch Normalization(各个网络层输出的归一化)时,主要用到以下两个 api: tf.nn.moments(x, axes, name=None, keep_dims=False) ⇒ mean, variance: 统计矩,mean 是一阶矩,variance 则是二阶中心矩 tf.nn.batch_normalization(x, mean, variance, offset, scale, variance_epsilon, name=None…
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而言之,就是 tf.add(a, b) 与 a + b二者的区别,类似的也有,tf.assign 与 =(赋值运算符)的差异. 在计算精度上,二者并没有差别.运算符重载的形式a+b,会在内部转换为,a.__add__(b),而a.__add__(b)会再一次地映射为tf.add,在 math_ops.…
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ------------------------------------------------------------------------------------------------------------------ tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具…
原文地址: https://www.jianshu.com/p/8ba9cfc738c2 ------------------------------------------------------------------------------------------------ 1.          tf.train.slice_input_producer  函数,一种模型数据的排队输入方法. tf.train.slice_input_producer( tensor_list, num…
tensorflow最大的问题就是大家都讲算法,不讲解用法,API文档又全是英文的,看起来好吃力,理解又不到位.当然给数学博士看的话,就没问题的. 最近看了一系列非常不错的文章,做一下记录: https://www.zhihu.com/people/hong-lan-99/activities https://github.com/lanhongvp https://blog.csdn.net/qq_37747262 https://blog.csdn.net/qq_37747262/artic…
[Tensorflow] tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))用法 作用:输出正确的预测结果利用tf.argmax()按行求出真实值y_.预测值y最大值的下标,用tf.equal()求出真实值和预测值相等的数量,也就是预测结果正确的数量,tf.argmax()和tf.equal()一般是结合着用. 具体讲解:correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 1.tf.e…
tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名.而创建tf的文件名队列就需要使用到 tf.train.slice_input_producer 函数. tf…
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regularizerd()函数在tf 2.x版本中被弃用了. 两者都能用来L2正则化处理,但运算有一点不同. import tensorflow as tf sess = InteractiveSession() a = tf.constant([1, 2, 3], dtype=tf.float32) b =…
生活中有很多场景都需要我们签字(签名),如果是一些不重要的场景,我们的签名好坏基本无所谓了,但如果是一些比较重要的场景,如果我们的签名比较差的话,就有可能给别人留下不太好的印象了,俗话说字如其人嘛,本文我们使用 Python 来制作一个艺术签名小工具,给自己设计一个优雅的签名. 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家提供一个好的学习平台,免费领取…
在处理大规模数据时,数据无法全部载入内存,我们通常用两个选项 使用tfrecords 使用 tf.data.Dataset.from_generator() tfrecords的并行化使用前文已经有过介绍,这里不再赘述.如果我们不想生成tfrecord中间文件,那么生成器就是你所需要的. 本文主要记录针对 from_generator()的并行化方法,在 tf.data 中,并行化主要通过 map和 num_parallel_calls 实现,但是对一些场景,我们的generator()中有一些…
VUCA时代,想要成功,这些原则你一定得明白(<哈佛商业评论>增刊) <哈佛商业评论>的10篇文章的合集.主题是VUCA时代,也就是当前复杂多变难预测的时代.大部分文章都是点到为止看着不过瘾,只有那篇<商业决策远离线性思维>是从问题到案例到解决方案都有详细的阐述,不过这篇在最近的某期<哈佛商业评论>上看到过. 总体评价3.5星,有一定参考价值. 以下是书中一些内容的摘抄,#号后面是kindle电子版中的页码: 1:VUCA一词20世纪90年代起源于美国军方,…
“当前,政府数字化和数字政府建设已成为一种趋势.一种必然,并且有了一条水到渠成式的实现路径.” 上升为国家战略的数字中国建设加速了”智慧政务“的生动实践,杭州未来科技城的「企业数据大脑」就是一个典型. 从17年8月开始,入驻的企业迅速增多,这是科技城政府特别直观的感受.伴随而来的,是业务处理日趋复杂.政务信息资源的急剧增长,而已有数据管理模式已不适应大数据时代政务的特点.为贯彻落实“最多跑一次”改革,推进“三化融合”,推行“互联网+”政务服务模式,更精准地服务企业,杭州未来科技城政府联合奇点云,…
原文地址:http://bbs.tenpay.com/forum.php?mod=viewthread&tid=13723&highlight=%CC%FA%CD%A8 如果你的是铁通,电信的网络,在提交支付请求时报“验证签名失败”的错误,请把spbill_create_ip字段的值.修改为%2E,签名时还是按.,这样可以解决问题 原因:    支付接口中有ip字段,有些铁通.长宽网络有时会替换通讯内容中文本内容为ip的字段,导致数据被篡改,财付通验证签名报错. 解决方案:    商户组支…
A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals that tf.layers.dropout is a wrapper for tf.nn.dropout. You want to use the dropout() function in tensorflow.contrib.layers, not the one in tensorflow.n…
tf.matmul(a,b,transpose_a=False,transpose_b=False, adjoint_a=False, adjoint_b=False, a_is_sparse=False, b_is_sparse=False, name=None) 参数: a 一个类型为 float16, float32, float64, int32, complex64, complex128 且张量秩 > 1 的张量 b  一个类型跟张量a相同的张量 transpose_a 如果为真,…
用法: 1.tf.summary.scalar 用来显示标量信息,其格式为: tf.summary.scalar(tags, values, collections=None, name=None) 例如:tf.summary.scalar('mean', mean) 一般在画loss,accuary时会用到这个函数. 2.tf.summary.histogram 用来显示直方图信息,其格式为: tf.summary.histogram(tags, values, collections=Non…
企业IT管理员IE11升级指南 系列: [1]—— Internet Explorer 11增强保护模式 (EPM) 介绍 [2]—— Internet Explorer 11 对Adobe Flash的支持 [3]—— IE11 新的GPO设置 [4]—— IE企业模式介绍 [5]—— 不跟踪(DNT)例外 [6]—— Internet Explorer 11面向IT专业人员的常见问题 [7]—— Win7和Win8.1上的IE11功能对比 [8]—— Win7 IE8和Win7 IE11对比…
很多开发者在App无法上架Appstore,需要内测或者开放给苹果用户使用的时候,需要选择企业签名来帮助自己的App开放下载链接,给苹果用户使用.苹果企业签名的类型有很多,TF签名最近又很火爆,那么企业签名和TF签名我们应该怎么选呢? 我们首先来分析一下企业签名和TF签名的优缺点吧. ​ 企业签名的优点很明显,就是不需要苹果账号.也不需要苹果审核,同时,通过企业签名的方式上架的App没有下载数量上的限制.缺点就是稳定性很难说,有可能会掉签.如果不是在微导流这种靠谱的平台进行企业签名的话,个人企业…
距离ios迅雷从App Store下架已经过去很久了,小微经常看到知乎里有很多迅雷用户到处寻找可以下载应用的渠道.近期迅雷被爆“好消息”iOS 迅雷(官方版)正式上架 App Store,此消息一出可以说了了不少用户的心愿.那么在没有ios迅雷的日子里,用户是怎么进行下载安装的呢?这里就不得不提起苹果TF签名了.要知道想要在未越狱的 iPhone 上安装迅雷就需要安装签名包或者通过 TF 内测的形式来实现应用下载. 众所周知,App想要在苹果手机上下载安装,最基本的就是进行App Store上架…