luogu P5325 Min_25筛】的更多相关文章

LINK:Min_25筛 新版感觉有点鬼畜 而且旧版的也够用了至少. 这个并不算很简单也不算很困难的知识点 学起来还是很麻烦的. (误入了很多dalao的blog 说的云里雾里的 甚是懵逼 这里推荐几个blog一起看 能看出很多门道 网上资源辣么多 我自然也不会去写一个非常正常的学习笔记辣.. 只会写几个容易疑惑的地方. 注意 学会 和会写代码是两码事 因为代码中有一些细节需要细细揣摩. 关于g数组的求出 其转移静下心来理解还是可以看懂的这里不再赘述. 注意 为了方便\(f(1)\)最后考虑.…
\(\mathcal{Description}\)   Link.   对于积性函数 \(f(x)\),有 \(f(p^k)=p^k(p^k-1)~(p\in\mathbb P,k\in\mathbb N_+)\).求 \(\sum_{i=1}^nf(i)\bmod(10^9+7)\).   \(n\le10^{10}\). \(\mathcal{Solution}\)   Min_25 筛是不可能的.   Powerful Number 三步走咯!考虑素数点值: \[f(p)=p^2-p \]…
P5325 [模板]Min_25筛 题目背景 模板题,无背景. 题目描述 定义积性函数$f(x)$,且$f(p^k)=p^k(p^k-1)$($p$是一个质数),求 $$\sum_{i=1}^n f(x)$$ 对$10^9+7$取模. 输入输出格式 输入格式: 一行一个整数$n$. 输出格式: 一个整数表示答案. 输入输出样例 输入样例#1: 复制 10 输出样例#1: 复制 263 输入样例#2: 复制 1000000000 输出样例#2: 复制 710164413 说明 $f(1)=1,f(…
min_25 筛介绍 我们考虑这样一个问题. \[ans=\sum_{i = 1}^nf(i)\\ \] 其中 \(1 \le n \le 10^{10}\) 其中 \(f(i)\) 是一个奇怪的函数.并不像 \(μ(i),φ(i),iφ(i)\)那样具有那么好的性质.但是满足以下条件: 若 \(p\)为质数,则 \(f(p)\)是一个关于 \(p\)的多项式,比如 \(μ(p)=−1,φ(p)=p−1\). 若 \(p\)为质数,\(e\)为正整数,则 \(f(pe)\)可以很快求出.(通常是…
题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i,x_2),\ldots,\gcd(i,x_m)) \] 对 \({10}^9+7\) 取模. \(nm\leq {10}^9\) 题解 先推一下式子: \[ ans=\sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,…
原文链接https://www.cnblogs.com/zhouzhendong/p/Min-25.html 前置技能 埃氏筛法 整除分块(这里有提到) 本文概要 1. 问题模型 2. Min_25 筛 3. 模板题以及模板代码 问题模型 有一个积性函数 $f$ ,对于所有质数 $p$,$f(p)$ 是关于 $p$ 的多项式,$f(p^k)$ 非常容易计算(不一定是关于 p 的多项式). 求 $$\sum_{i=1}^{n} f(i)$$ $n\leq 10^{10}$ ${\rm Time\…
传送门 省选之前做数论题会不会有Debuff啊 这道题显然是要求\(1\)到\(x\)中所有数第二大质因子的大小之和,如果不存在第二大质因子就是\(0\) 线性筛似乎可以做,但是\(10^{11}\)的数据范围让人望而却步,而杜教筛需要对\(f(x)\)找到一个函数\(g(x)\)做狄利克雷卷积成为一个好算前缀和的函数\(h(x)\),相信各位是找不到这样一个函数的.所以考虑Min_25筛.但用Min_25筛还不知道要筛什么东西,故从Min_25筛最后的计算过程入手. Min_25筛的每一层递归…
题目大意 给你 \(n,k\),求 \[ S_k(n)=\sum_{i=1}^n\sigma_0(i^k) \] 对 \(2^{64}\) 取模. 题解 一个min_25筛模板题. 令 \(f(n)=\sigma_0(n^k)\),那么 \(S_k(n)=\sum_{i=1}^nf(i)\),而且 \[ \begin{cases} f(1)&=1\\ f(p)&=k+1\\ f(p^c)&=kc+1 \end{cases} \] 直接上min_25筛就好了. 时间复杂度:\(O(\…
题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\)取模. \(n\leq {10}^9,k\leq 50\) 题解 记\(f(n)\)为\(n\)的次大因数 显然\(sgcd(i,j)=f(gcd(i,j))\) 先推一波式子. \[ \begin{align} &\sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k\\ =&a…
题目描述 给你\(n\),求 \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)} \] 对\({10}^{12}+39\)取模. \(\sigma_0(i)\)表示约数个数. 题解 把式子拆成两部分: \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)}=\prod_{i=1}^n{\sigma_0(i)}^{i}\prod_{i=1}^n{\sigma_0(i)}^{\mu(i)} \] 先看前面这部分 \[ \begin{align}…