题目描述 题目传送门 分析 看到比值的形式就想到 \(01分数规划\),二分答案 设当前的值为 \(mids\) 如果存在\(\frac{\sum _{e \in S} v(e)}{|S|} \geq mids\) 那么 \(\sum _{e \in S} v(e)-|S| \times mids \geq 0\) 我们把每一条边的权值减去 \(mids\) 问题就变成了找出一条长度在 \([l,r]\) 之间的简单路径 是的路径的长度大于等于 \(0\) 我们可以开一个权值线段树去维护,但这样…
点分治,对于每个分治中心,考虑求出经过它的符合长度条件的链的最大权值和. 从分治中心dfs下去取出所有链,为了防止两条链属于同一个子树,我们一个子树一个子树地处理. 用s1[i]记录目前分治中心伸下去的链中长度为i的链的最大权值,s2[i]记录新子树中的链的最大权值. 分数规划,考虑合并,枚举长度,由于另一个长度在一个滑动窗口中,所以使用单调队列求解即可. 为了保证复杂度,讲子树按高度排序.注意初始化等问题. #include<cstdio> #include<vector> #i…
P4292 [WC2010]重建计划 题目描述 \(X\)国遭受了地震的重创, 导致全国的交通近乎瘫痪,重建家园的计划迫在眉睫.\(X\)国由\(N\)个城市组成, 重建小组提出,仅需建立\(N-1\)条道路即可使得任意两个城市互相可达.于是,重建小组很快提出了一个包含\(N-1\)条道路的方案,并满足城市之间两两可达,他们还计算评估了每条道路\(e\)建设之后可以带来的价值\(v(e)\). 由于重建计划复杂而艰难,经费也有一定限制.因此,政府要求第一期重建工程修建的道路数目为\(k\)条,但…
无脑上二分+淀粉质完事了 每个子树算的时候把儿子按照最长路径从小到大依次做,和前面的单调队列算一波,每个儿子的复杂度不超过这个子树大小 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!isdigit(ch)){ if(ch=='-…
题意 自己看. 分析 求这个平均值的最大值就是分数规划,二分一下就变成了求一条长度在[L,R]内路径的权值和最大.有淀粉质的做法但是我没写,感觉常数会很大.这道题可以用长链剖分做. 先对树长链剖分. 我们像做dsu on tree一样先做重儿子,用线段树继承重儿子的全部信息,然后做其他轻儿子 查询的时候枚举一下路径的长度len,一边单点O(1)O(1)O(1)查询长度为len的最大权值,一边线段树O(logn)O(logn)O(logn)查询长度为[L-len,R-len]的区间即可 时间复杂度…
题目大意 \(n\)(\(n\leq10^5\))个点的一棵树,有边权\(w\),给定\(l,r\),求边数在\([l,r]\)中的路径的平均边权的最大值 题解 二分答案,判断时将边权变成\(w-mid\),判断是否存在一条边权总和非负且边数在[l,r]的路径 设\(f(i,j)\)表示从点\(i\)往下走\(j\)条边的边权总和最多是多少 则有\(f(i,j)=max_{v\in son(i)}\{f(v,j-1)+w(i,v)\}\) \(ans(i)=max_{v\in son(i) ,…
题面传送门 我!竟!然!独!立!A!C!了!这!道!题!incredible! 首先看到这类最大化某个分式的题目,可以套路地想到分数规划,考虑二分答案 \(mid\) 并检验是否存在合法的 \(S\) 使得 \(\dfrac{\sum\limits_{e\in S}v(e)}{|S|}\ge mid\),将分母乘过去并稍微变个形可得 \(\sum\limits_{e\in S}v(e)-mid\ge 0\),也就是说我们将每条边边权都减去 \(mid\) 并检验包含 \([L,R]\) 条边的路…
[Wc2010]重建计划 Time Limit: 40 Sec  Memory Limit: 162 MBSubmit: 4345  Solved: 1054[Submit][Status][Discuss] Description Input 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N…
题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深度在\([L-d,R-d]\)内的最大值更新.这可以用单调队列维护. 这需要子树中的点按dep排好序.可以用BFS,省掉sort. 直接这样的话,每次用之前的子树更新当前子树时,每次复杂度是\(O(\max\{dep\})\)的(之前子树中最大的深度).能被卡成\(O(n^2\log n)\). 可…
题解: 这题我居然做了一星期?... 平均值的极值其实也可以算是一种分数规划,只不过分母上b[i]=1 然后我们就可以二分这个值.类似与 HNOI最小圈 如果没有 链的长度的限制的话,我们直接两遍dfs就可以求出以每个点为起点的最长链,然后看看有没有权值和>0的即可. 但现在链有长度限制... 所以膜拜题解... 发现我们可以点分治,然后每个节点的合法对象都是一段连续的区间, 当用某个值来更新答案的时候是一个连续的区间. 所以可以单调队列来维护定长的区间最大值问题. 实现的时候好多细节...还好…
[WC2010]重建计划 LG传送门 又一道长链剖分好题. 这题写点分治的人应该比较多吧,但是我太菜了,只会长链剖分. 如果你还不会长链剖分的基本操作,可以看看我的长链剖分总结. 首先一看求平均值最大,马上想到套个二分,每次把边权变为原来的边权减去二分的答案,看树上有没有长度在\(L\)和\(U\)之间的正权链就好了. 于是乎问题就转变成了求树上权值和最大的链,这时马上想到我们以前做过的一道题P2993 [FJOI2014]最短路径树问题 题解,我已经在这道题的题解中把需要的思想讲明白了,如果你…
传送门 看到平均数最大,自然地想到二分答案.那么我们的$check$函数就是要求:是否存在一条长度在$[L,U]$的路径,满足其权值和$\geq 0$. 看到长度在$[L,U]$,自然地想到点分治求解.我们考虑如何统计答案,像树的难题那样使用线段树的话,复杂度会变成$nlog^3n$,显然是跑不过这道题的. 我们考虑:将一棵子树内的路径按照长度排序,那么从前往后依次询问子树内每一条路径的贡献的时候,在已经搜过的子树中可以匹配的长度区间是一个单调的区间.那么我们就可以使用单调队列将合并过程优化为$…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1758 01分数规划,所以我们对每个重心进行二分.于是问题转化为Σw[e]-mid>=0, 对于一棵子树维护点的dep,dis,并用队列q存下来.令mx[i]表示当前dep为i的最大权值,维护一个单调队列dq,维护当前符合条件的mx,当我们从q的队尾向前扫时,它的dep是递减的,利用这个性质维护单调队列,最后更新一遍mx.具体看代码吧TAT 代码: #include<cstring>#…
一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解 二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的结点的深度来确定$tb数组$中的滑块. 因为分数规划要找的是$max$,BFS遍历当前结点的深度越来越大,这样滑块也是单调向右滑动,所以滑块里的最大值就应当用单调队列解决 #include<cstdio> #include<algorithm> #define read(x) x=ge…
两题都是树分治. 1758这题可以二分答案avgvalue,因为avgvalue=Σv(e)/s,因此二分后只需要判断Σv(e)-s*avgvalue是否大于等于0,若大于等于0则调整二分下界,否则调整二分上界.假设一棵树树根为x,要求就是经过树根x的最大答案,不经过树根x的可以递归求解.假设B[i]为当前做到的一颗x的子树中的点到x的距离为i的最大权值,A[i]为之前已经做过的所有子数中的点到x的距离为i的最大权值(这里的权值是Σv(e)-i*avgvalue),那么对于当前子树的一个距离i,…
Description Input 第 一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N进行标号 Output 输出最大平均估值,保留三位小数 Sample Input 4 2 3 1 2 1 1 3 2 1 4 3 Sample Output 2.500 HINT N<=100000,1<=…
http://www.lydsy.com/JudgeOnline/problem.php?id=1758 (题目链接) 题意 给出一棵树,每条边有边权,问选出一条长度为$[L,U]$的路径,使得路径上的边权平均数最大是多少. Solution 哈哈,爸爸终于过啦. 首先二分答案,然后路径统计显然点分治,统计答案的时候单调队列维护一下滑动窗口里面的最值.因为要点分治若干次,我们不妨将重心预处理出来,减少常数. 一定要小心,在点分治处理子树的时候,一定要按照深度从小到大的顺序处理,不然直接被新加的那…
考虑点分治.对子树按照根部颜色排序,每次处理一种颜色的子树,对同色和不同色两种情况分别做一遍即可,单调队列优化.但是注意到这里每次使用单调队列的复杂度是O(之前的子树最大深度+该子树深度),一不小心就退化成O(n2).于是我们按照同颜色最大深度为第一关键字.子树深度为第二关键字排序,每次处理完一种颜色再与之前的其他颜色合并,这样每次的复杂度就是其自身深度了. #include<iostream> #include<cstdio> #include<cmath> #inc…
浅谈树分治:https://www.cnblogs.com/AKMer/p/10014803.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1758 先来讲讲部分分吧. 对于\(20\)%的数据 我们可以对于每个点为根\(dfs\)一遍,然后用\(deep\)在\([L,R]\)之间的点与当前根的距离除以深度来更新答案: 时间复杂度:\(O(n^2)\) 空间复杂度:\(O(n)\) 对于另外\(30\)%的数据 因为是一…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4182 题解 有一个很直观的想法是设 \(dp[x][i]\) 表示在以 \(x\) 为根的子树中选择一个总花费不超过 \(i\) 的以 \(x\) 为根的连通块的最大收益. 可惜,很不幸的是,这样做的时间复杂度无法像一般的树上背包和序列背包一样被保证.能够被保证复杂度的方法只有(可能是我只会)第二维与子树大小有关的方法,或者是将树转化成 dfs 序,然后在序列上做背包. 第二种方法具体的来说…
题目大意:给定一棵树,求一条长度在L到R的一条路径,使得边权的平均值最大. 题解 树上路径最优化问题,不难想到点分治. 如果没有长度限制,我们可以套上01分数规划的模型,让所有边权减去mid,求一条路径长度非负. 现在考虑有L和R的限制,就是我们在拼接两条路径的时候,每条路径能够匹配的是按深度排序后一段连续区间,我们只需要维护区间最大值. 然后随着深度的单调变化,这个区间在滑动,这就变成了滑动窗口问题. 代码 #include<iostream> #include<cstdio>…
code: #include <bits/stdc++.h> using namespace std; #define setIO(s) freopen(s".in","r",stdin) const int N=200006; const double eps=1e-6; const double inf=-100000000; struct node { int u,dep,val; node(int u=0,int dep=0,int val=0)…
Description Input 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N进行标号 Output 输出最大平均估值,保留三位小数 Sample Input 4 2 3 1 2 1 1 3 2 1 4 3 Sample Output 2.500 HINT N<=100000,1<=L…
Description Input 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N进行标号 Output 输出最大平均估值,保留三位小数 Sample Input 4 2 3 1 2 1 1 3 2 1 4 3 Sample Output 2.500 HINT N<=100000,1<=L…
题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N进行标号 输出 输出最大平均估值,保留三位小数 样例输入 4 2 3 1 2 1 1 3 2 1 4 3 样例输出 2.500 提示 N<=100000,1<=L<=U<=N-1,Vi<=1000000 这题算…
传送门 Description Solution 时隔多年,补上了这题的长链剖分写法 感觉比点分治要好写的多 我们假设\(pos\)是当前点的\(dfn\),它距离所在链的底端的边的数量是\(len\),距离是\(siz\) 那么我们要求得\(g[pos...pos+len]\) 其中\(g[pos+i]+siz\)表示的是当前点往下长度为\(i\)的最长链的大小 初始情况下,\(g[pos]=-siz[pos]\) 为什么要这么写呢? 因为转移重儿子的时候,我们直接把数组右移了一位,这样子定义…
今天晚上思维比较乱,以后再写写吧#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; ,INF=1e9+; ; inline int read(){ ,f=; ;c=getchar();} +c-';c=getchar();} return x*f; } int n,L,U…
传送门 长链剖分好题. 题意简述:给一棵树,问边数在[L,R][L,R][L,R]之间的路径权值和与边数之比的最大值. 思路: 用脚指头想都知道要01分数规划. 考虑怎么checkcheckcheck. 发现就是求在转化成真·边权之后有没有长度在[L,R][L,R][L,R]之间的路径权值是大于0的. 然后可以设计状态fi,jf_{i,j}fi,j​表示iii开头长度为jjj的路径最大值,这个可以用长链剖分优化转移. 然后考虑怎么把经过iii的两条路径拼起来更新答案,这个可以用线段树优化转移,然…
看到平均值一眼分数规划,二分答案mid,边权变为w[i]-mid,看是否有长度在[L,R]的正权路径.设f[i][j]表示以i为根向下j步最长路径,用长链剖分可以优化到O(1),查询答案线段树即可,复杂度O(nlog2n) 不知为什么bzoj上RE,luogu上AC,暂时不管了. #include<bits/stdc++.h> #define lson l,mid,rt<<1 #define rson mid+1,r,rt<<1|1 using namespace st…
1758: [Wc2010]重建计划 Time Limit: 40 Sec  Memory Limit: 162 MBSubmit: 4707  Solved: 1200[Submit][Status][Discuss] Description Input 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城…