理解MapReduce计算构架】的更多相关文章

用Python编写WordCount程序任务 程序 WordCount 输入 一个包含大量单词的文本文件 输出 文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔 1.编写map函数,reduce函数 (1)首先创建一个文件夹 mkdir wc (2)编写两个mapper函数 2.将其权限作出相应修改 3.本机上测试运行代码 4.放到HDFS上运行,下载并上传文件到hdfs上 5.用Hadoop Streaming命令提交任务…
最近做了一个小的mapreduce程序,主要目的是计算环比值最高的前5名,本来打算使用spark计算,可是本人目前spark还只是简单看了下,因此就先改用mapreduce计算了,今天和大家分享下这个例子,也算是对自己写的程序的总结了. 首先解释下环比,例如我们要算本周的环比,那么计算方式就是本周的数据和上周数字的差值除以上周数值就是环比了,如果是月的环比就是本月和上月数据的差值除以上月数字就是本月环比了.不过本mapreduce实例不会直接算出比值,只是简单求出不同时间段数值的差值,最终环比结…
WordCount是一个入门的MapReduce程序(从src\examples\org\apache\hadoop\examples粘贴过来的): package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path…
Google工程师将MapReduce定义为一般的数据处理流程.一直以来不能完全理解MapReduce的真义,为什么MapReduce可以“一般”? 最近在研究Spark,抛开Spark核心的内存计算,这里只关心Spark做了什么.在Spark上的所有工作都是围绕数据集进行,包括创建新的数据集.对数据集的转换.对数据集的归约.对于实际应用中的数据处理流程,Spark的这些似乎足够了,足够形成一套一般的数据处理流程.的确,Spark以数据集为操作对象,而可以不论数据集中数据的类型——很朴素的思想!…
彻底理解MapReduce shuffle过程原理 MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Redu…
1. MapReduce基本编程模型和框架 1.1 MapReduce抽象模型 大数据计算的核心思想是:分而治之.如下图所示.把大量的数据划分开来,分配给各个子任务来完成.再将结果合并到一起输出.注:如果数据的耦合性很高,不能分离,那么这种并行计算就不合适了. 图1: MapReduce抽象模型 1.2 Hadoop的MapReduce的并行编程模型 如下图2所示,Hadoop的MapReduce先将数据划分为多个key/value键值对.然后输入Map框架来得到新的key/value对,这时候…
之前写过关于Hadoop方面的MapReduce框架的文章MapReduce框架Hadoop应用(一) 介绍了MapReduce的模型和Hadoop下的MapReduce框架,此文章将进一步介绍mapreduce计算模型能用于解决什么问题及有什么巧妙优化. MapReduce到底解决什么问题? MapReduce准确的说,它不是一个产品,而是一种解决问题的思路,能够用分治策略来解决问题.例如:网页抓取.日志处理.索引倒排.查询请求汇总等等问题.通过分治法,将一个大规模的问题,分解成多个小规模的问…
前言 项目中运用了Spark进行Kafka集群下面的数据消费,本文作为一个Spark入门文章/笔记,介绍下Spark基本概念以及MapReduce模型 Spark的基本概念: 官网: http://spark.apache.org/ 给出了如下概念 Apache Spark™ is a unified analytics engine for large-scale data processing. Apache Spark™是用于大规模数据处理的统一分析引擎.当然,它也适用于AI人工智能. A…
理解MapReduce Hadoop的MapReduce过程具有如下形式:           1) map: (K1, V1) => list(K2, V2)          2) reduce: (K2, list(V2)) => list(K3, V3) 我用一个简单的例子说明它表示的含义: 假设待分析的数据文件是一个用户名和密码的表,即"用户名,密码"格式: ========= input.dat========= zhang,123456 wang,qazxsw…
MapReduce计算模型 MapReduce两个重要角色:JobTracker和TaskTracker. ​ MapReduce Job 每个任务初始化一个Job,没个Job划分为两个阶段:Map和Reduce阶段. Map函数接受一个<key, value>形式的输入,输出一个<key, value>形式的中间输出. Hadoop负责将所有的相同中间key值的value集合到一起传递给Reduce函数. Reduce函数接受一个<key, (list of value)&…