C++ opencv 数字识别】的更多相关文章

现在很多场景需要使用的数字识别,比如银行卡识别,以及车牌识别等,在AI领域有很多图像识别算法,大多是居于opencv 或者谷歌开源的tesseract 识别. 由于公司业务需要,需要开发一个客户端程序,同时需要在xp这种老古董的机子上运行,故研究了如下几个数字识别方案: ocr 识别的不同选择方案 tesseract 放弃:谷歌的开源tesseract ocr识别目前最新版本不支持xp系统 云端ocr 识别接口(不适用) 费用比较贵: 场景不同,我们的需求是可能毫秒级别就需要调用一次ocr 识别…
#include "cv.h" #include "highgui.h" #include "cxcore.h" #include <stdlib.h> #include <stdio.h> #define N 5//载入数字图片个数 char *testPic[] = {"test1.jpg"}; ; //二值化阀值 ; //识别数字轮廓长度的下限 单位(像素) ; //识别数字轮廓长度的上限 //数…
输入命令: conda install opencv 返回信息:…
欢迎大家关注腾讯云技术社区-博客园官方主页,我们将持续在博客园为大家推荐技术精品文章哦~ 作者:刘潇龙 前言 首先需要说明,这里所说的数字识别不是手写数字识别! 但凡对机器学习有所了解的人,相信看到数字识别的第一反应就是MNIST.MNIST是可以进行数字识别,但是那是手写数字.我们现在要做的是要识别从九宫格图片中提取出来的印刷体的数字.手写数字集训练出来的模型用来识别印刷体数字,显然不太专业.而且手写体跟印刷体相差不小,我们最看重的正确率问题不能保证. 本文从零开始做一遍数字识别,展示了数字识…
Java基于opencv实现图像数字识别(五)-投影法分割字符 水平投影法 1.水平投影法就是先用一个数组统计出图像每行黑色像素点的个数(二值化的图像): 2.选出一个最优的阀值,根据比这个阀值大或小,用一个数组记录相应Y轴的坐标: 3.因为是水平切割我们只需要Y轴的切割点即可,宽度默认图像的宽,高度可以用相邻的切割点相减得到: 4.优化切割点,把切割点靠近的都清除掉 5.设置感应区的区域,切割图片 垂直投影法和水平投影法类似,对比思考一下 因为我做的是表格的切割,你如果想实现验证码的切割,或者…
Java基于opencv实现图像数字识别(四)-图像降噪 我们每一步的工作都是基于前一步的,我们先把我们前面的几个函数封装成一个工具类,以后我们所有的函数都基于这个工具类 这个工具类呢,就一个成员变量Mat,非常的简单,这里给出代码 public class ImageUtils { private static final int BLACK = 0; private static final int WHITE = 255; private Mat mat; /** * 空参构造函数 */…
Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字节存放灰度值(又称强度值.亮度值),灰度范围为0-255.一般常用的是加权平均法来求像素点的灰度值,opencv开发库所采用的一种求灰度值算法如下: :)Gray = 0.072169 * B + 0.715160 * G + 0.212671 * R 有两种方式可以实现灰度化,如下 方式1 @Te…
Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要是表格中数字的识别,但这个不是重点.重点是通过这个我们可以举一反三,来实现我们自己的业务. 图像的识别主要分为两步:图片预处理和图像识别:这两步都很重要 图像预处理: 1. 图像灰度化:二值化 2. 图像降噪,去除干扰线 3. 图像腐蚀.膨胀处理 4. 字符分割 5. 字符归一化 图像识别: 1.…
Java基于opencv实现图像数字识别(一) 最近分到了一个任务,要做数字识别,我分配到的任务是把数字一个个的分开:当时一脸懵逼,直接百度java如何分割图片中的数字,然后就百度到了用BufferedImage这个类进行操作:尝试着做了一下,做到灰度化,和二值化就做不下去了:然后几乎就没有啥java的资料了,最多的好像都是c++,惹不起.惹不起...... 我也想尝试着用c++做一下,百度到了c++基于opencv来做图像识别的:但是要下vs啊,十几个g呢,我内存这么小,配置这么麻烦,而且vs…
初次接触TensorFlow,而手写数字训练识别是其最基本的入门教程,网上关于训练的教程很多,但是模型的测试大多都是官方提供的一些素材,能不能自己随便写一串数字让机器识别出来呢?纸上得来终觉浅,带着这个疑问昨晚研究了下,利用这篇文章来记录下自己的一些心得! 以下这个图片是我随机写的一串数字,我的目标是利用训练好的模型来识别出图片里面的手写数字,开始实战! 2层卷积神经网络的训练: from tensorflow.examples.tutorials.mnist import input_data…