目录 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在重置日(reset date)的价格 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在重置日(reset date)的价格 记首个重置日 \(T_0=0\) 观察到的即期期限结构是 \(Y(t)\),对应零息债券的价格是, \[ P(T_0,T_i) = e^{-Y(T_i)T_i},i=1,\dots,n \] 根据 LIBOR 远期利率的定义, \[ \begin{aligned…
目录 第五章:久期向量模型 思维导图 久期向量的推导 久期向量 广义久期向量 一些想法 第五章:久期向量模型 思维导图 久期向量的推导 \[ V_0 = \sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds} \] \[ V^\prime_0 = \sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f^\prime(s)ds} \] \[ \begin{aligned} \frac{V_0^{\prime} - V_0}{V_0} &= \…
目录 第四章:M-absolute 和 M-square 风险度量 思维导图 两个重要不等式的推导 关于 \(M^A\) 的不等式 关于 \(M^2\) 的不等式 凸性效应(CE)和风险效应(RE)的推导 第四章:M-absolute 和 M-square 风险度量 思维导图 从第四章开始比较难了 \(M^A\) 和 \(M^2\) 控制了组合预期变化的下限 两个重要不等式的推导 首先有 \[ V_0 = \sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}…
目录 第三章:拟合期限结构 思维导图 扩展 第三章:拟合期限结构 思维导图 扩展 NS 模型的变种…
目录 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子…
目录 第一章:利率风险建模概览 思维导图 一些想法 第一章:利率风险建模概览 思维导图 一些想法 久期向量模型类似于研究组合收益的高阶矩. 久期向量模型用的是一般多项式表达高阶久期,试试正交多项式? Nelson-Siegel 模型家族的成员同样可以用少量参数描述整个曲线的动态,因此可以搞出类似主成份久期的模型.…
目录 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 有关现金流映射技术的推导 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 在解关键方程的时候施加 \(L^1\) 约束也许可以得到"稀疏解",进而减少交易成本. 借鉴样条插值拟合期限结构时选择 knot 的方法选择关键期限. 有关现金流映射技术的推导 已知, \[ \Delta y(t) = \begin{cases} \Delta y(t_{first}) & t \le t_{first}\\ \De…
目录 第十章:主成分模型与 VaR 分析 思维导图 一些想法 推导 PCD.PCC 和 KRD.KRC 的关系 PCD 和 KRD PCC 和 KRC 第十章:主成分模型与 VaR 分析 思维导图 一些想法 NS 家族模型的参数有经济意义,同时参数变化的行为类似主成分,考虑基于 NS 模型参数的风险度量. 尝试用(多元)GARCH 滤波利率变化,对残差应用 PCA. 推导 PCD.PCC 和 KRD.KRC 的关系 利用主成分系数矩阵的正交性. PCD 和 KRD \[ \begin{align…
一.寄存器对象: 函数中频繁被使用的变量可以加上register就可声明为寄存器对象.对于寄存器对象,假如能够放到寄存器中就会放到寄存器中,放不到的话就放到内存中.比如 register int  a,一般用于循环控制变量挺好的. 二.静态变量. 这里容易犯一个错误,记住,静态变量只初始化一次,没有初始化的会自动初始化为0 #include <iostream>    int traceGcd( int v1, int v2 )  {    static int depth = 1;  cou…
基于估计的无约束预测控制 1.引言 基本上这两个部分都是在线性理论的框架下,利用状态空间法来建模.求解控制律.状态空间模型在理论分析上具有很强的优越性,但实际应用中能直接准确且经济地获取系统状态并不容易.有些状态,尤其是温度(如火箭喷口温度等)只能间接估计,因此我们可以使用状态观测器来重构一个易于实现的系统来模拟原系统的状态. 具体的做法是,先利用原系统可以测量的变量,如系统可测输入输出,使得在一定条件下满足估计的状态与原状态渐进等价,随后利用观测器重构的系统设计控制律. 观测器收敛条件 在设计…
MPC调节器 1.给定一个由状态空间法描述的离散系统: MPC控制器与其他线性二次调节器(LQR)的区别就在于其可以很好的将系统动态约束纳入考虑. 采样周期Ts控制了算法的效率,太大会错过很多系统运行时的细节(扰动),太小又使得计算量变大.合适的取值应该取上升时刻Tr的5%-10%,或取调节时间的百分之十,在过渡时间内采样5-16次. 2.MPC的基本运行机理: 1)预测系统未来动态求解 2)优化问题 3)解的第一个元素作用于系统 4)滚动时域.重复进行 3.预测 按照运行机理的第一步,在给定系…
目录 Keras 文档阅读笔记(不定期更新) 模型 Sequential 模型方法 Model 类(函数式 API) 方法 层 关于 Keras 网络层 核心层 卷积层 池化层 循环层 融合层 高级激活层 其他层 损失函数 评估标准 优化器 激活函数 正则化 约束 Keras 文档阅读笔记(不定期更新) 本文是 Keras 2.2.4 文档的阅读笔记,旨在以自顶向下的角度建立起对 Keras 主要模块的认识,同时方便记忆. 内容将不定期更新补充. 模型 Sequential 模型方法 compi…
阅读笔记 初始化 变量定义指定了变量的类型和标识符,也可以为对象提供初始值.定义时指定了初始值的对象被称为是 已初始化的.C++ 支持两种初始化变量的形式:复制初始化和 直接初始化.复制初始化语法用等号(=),直接初始化则是把初始化式放在括号中:int ival(1024); // direct-initializationint ival = 1024; // copy-initialization使用 = 来初始化变量使得许多 C++ 编程新手感到迷惑,他们很容易把初始化当成是赋值的一种形式…
http://www.agner.org/optimize/#manuals 阅读笔记Optimizing software in C++   7. The efficiency of different C++ constructs 栈的速度快是因为,总是反复访问同一段地址,如果没有大的数组,肯定实在L1 cahce中. 全局静态区,global,static变量,float constants, string constants, array initializer lists,switch…
Think in UML 阅读笔记(三) 把从现实世界中记录下来的原始需求信息,再换成一种可以知道开发的表达方式.UML通过被称为之概念化的过程来建立适合计算机理解和实现的模型,这个模型被称为分析模型,它介于原始需求和计算机实现之间,是一种过渡模型.绘制分析模型最主要的元模型有:边界类(boundary).实体类(entity).控制类(control).UML采用控制类来表达原始需求中的动态信息,即业务或用例场景中的步骤和活动.除了控制类外,其他类之间都不能直接相互访问,他们需要通过控制类来代…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
​ Trainer解析 我们继续Detectron2代码阅读笔记-(一)中的内容. 上图画出了detectron2文件夹中的三个子文件夹(tools,config,engine)之间的关系.那么剩下的文件夹又是如何起作用的呢? def main(args): cfg = setup(args) if args.eval_only: ... trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) if cfg.TEST.A…
之前看过TCN,稍微了解了一下语言模型,这篇论文也是对语言模型建模,但是由于对语言模型了解不深,一些常用数据处理方法,训练损失的计算包括残差都没有系统的看过,只是参考网上代码对论文做了粗浅的复现.开学以来通过看的几篇论文及复现基本掌握了tensorflow的基本使用,了解了“数据处理-模型构建-训练“的处理问题基本流程,但是随着看论文的增多发现理论基础严重薄弱,以后应该会一边补理论一边看论文... 一.论文简介 来源:没...没找到 题目:Language Modeling with Gated…
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 3.2 音频 3.3 图像 3.4 多模态 4. Detailed overview 4.1 文本 4.1.1 LIWC/MRC 4.1.2 Receptiviti API 4.1.3 社交网络文本研究 4.1.4 深度神经网络应用 4.1.5 SenticNet 5 4.1.6 weighted…
伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本   <火球 UML大战需求分析>,首先,为什么选择这本书呢,其实,最开始我选择的是<实用软件需求分析>,可是后来大概看了<火球 UML大战需求分析>这本书前序之后啊,发现了,书中的作者一开始和我们有着一样的困扰,就象我们大学刚学到UML之后,学完一考试,考试前一复习,考完之后,就随手扔到了一边去.因为对于我们没有经历过正规…
<uml大战需求分析>阅读笔记05 这次我主要阅读了这本书的第九十章,通过看这章的知识了解了不少的知识开发某系统的重要前提是:这个系统有谁在用?这些人通过这个系统能做什么事? 一般搞清楚这件事,再画个业务流程图,就能条例清楚的表达系统的需求了.作为一个开发人员,不仅要懂得如何从用户那里获取有用的信息,还要懂得怎么清晰地描述自己的想法,给客户呈现出一个结构完整.功能全面的系统原型.那么,这些必备的画图技巧,就会帮上很大的忙. 用例图是用处非常广泛,使用频率最高的UML图,它用来描述什么角色通过某…
<<UML大战需求分析>>阅读笔记(2)> 此次读了uml大战需求分析的第三四章,我发现这本书讲的特别的好,由于这学期正在学习设计模式这本书,这本书就讲究对uml图的利用,突然发现uml特别有用处,而且作用特别的大,它可以在写代码之前,可以对代码有一个很好的框架分析. 对于第三章的内容来说,作者通过分析业务的模式,来了解uml图,面向对象比面向过程更高级,无需注重结构化编程和编程基本功.面向对象编程就是把代码放进一个个类中而已.将业务概念直接转变为类,赋予合适的属性和操作,就…
<<UML大战需求分析>>阅读笔记(1) 刚读了uml大战需求分析的第一二章,读了这些内容之后,令我深有感触.以前学习uml这门课的时候,并没有好好学,那时我认为这门课并没有什么用处,我一直认为一个程序员的能力是用编程能力强弱来衡量的,自读了这本书的前言,才发现原来uml与需求分析的关联特别大,非常后悔以前没有好好学习uml这门课. 对于这本书的第一章,作者主要讲了uml的一些基础,比如一些图的应用,这些图对开发软件的时候有特别大的作用.由于一些客户对做出的不是很了解,作为一个工程…
关于Hadoop已经小记了六篇,<Hadoop实战>也已经翻完7章.仔细想想,这么好的一个框架,不能只是流于应用层面,跑跑数据排序.单表链接等,想得其精髓,还需深入内部. 按照<Hadoop阅读笔记(五)——重返Hadoop目录结构>中介绍的hadoop目录结构,前面已经介绍了MapReduce的内部运行机制,今天准备入手Hadoop RPC,它是hadoop一种通信机制. RPC(Remote Procedure Call Protocol)——远程过程调用协议,它是一种通过网络…
酒,是个好东西,前提要适量.今天参加了公司的年会,主题就是吃.喝.吹,除了那些天生话唠外,大部分人需要加点酒来作催化剂,让一个平时沉默寡言的码农也能成为一个喷子!在大家推杯换盏之际,难免一些画面浮现脑海,有郁闷抓狂的,有出成果喜极而涕的,有不知前途在哪儿的迷茫与不安……总的来说,近一年来,不白活,不虚度,感触良多,不是一言两语能说得清道的明的,有时间可以做个总结,下面还是言归正传谈技术吧. 上篇在了解了Hadoop的目录和源码结构后,说好的要啃源码的,那就得啃.也感谢一直以来关注我.支持我的网友…
常言道:男人是视觉动物.我觉得不完全对,我的理解是范围再扩大点,不管男人女人都是视觉动物.某些场合(比如面试.初次见面等),别人没有那么多的闲暇时间听你诉说过往以塑立一个关于你的完整模型.所以,第一眼,先走外貌协会的路线,打量一番,再通过望闻问切等各种手段获取关于你的大量信息(如谈吐.举止等),以快速建立起对于你的认识. 待人接物如此,搞技术也不例外,起码我是这样的.把玩了一番Hadoop的MapReduce过程,单词计数.去重.单表关联等运行的时候控制台打印出各种我看懂看不懂的信息,有了这些视…
时至今日,已然看到第十章,似乎越是焦躁什么时候能翻完这本圣经的时候也让自己变得更加浮躁,想想后面还有一半的行程没走,我觉得这样“有口无心”的学习方式是不奏效的,或者是收效甚微的.如果有幸能有大牛路过,请指教如何能以效率较高的方式学习Hadoop. 我已经记不清圣经<hadoop 实战2>在我手中停留了多久,但是每一页每一章的翻过去,还是在脑壳里留下了点什么. 一段时间以来,我还是通过这本书加深以及纠正了我对于MapReduce.HDFS乃至Hadoop的新的认识.本篇主要介绍MapReduce…
继上篇了解了使用MapReduce计算平均数以及去重后,我们再来一探MapReduce在排序以及单表关联上的处理方法.在MapReduce系列的第一篇就有说过,MapReduce不仅是一种分布式的计算方法,更是一种解决问题的新思维.新思路.将原先看似可以一条龙似的处理一刀切成两端,一端是Map.一端是Reduce,Map负责分,Reduce负责合. 1.MapReduce排序 问题模型: 给出多个数据文件输入如: sortfile1.txt 11 13 15 17 19 21 23 25 27…
前言:圣诞节来了,我怎么能虚度光阴呢?!依稀记得,那一年,大家互赠贺卡,短短几行字,字字融化在心里:那一年,大家在水果市场,寻找那些最能代表自己心意的苹果香蕉梨,摸着冰冷的水果外皮,内心早已滚烫.这一年……我在博客园-_-#,希望用dt的代码燃烧脑细胞,温暖小心窝. 上篇<Hadoop阅读笔记(一)——强大的MapReduce>主要介绍了MapReduce的在大数据集上处理的优势以及运行机制,通过专利数据编写Demo加深了对于MapReduce中输入输出数据结构的细节理解.有了理论上的指导,仍…
前言:来园子已经有8个月了,当初入园凭着满腔热血和一脑门子冲动,给自己起了个响亮的旗号“大数据 小世界”,顿时有了种世界都是我的,世界都在我手中的赶脚.可是......时光飞逝,岁月如梭~~~随手一翻自己的博客,可视化已经快占据了半壁江山,思来想去,还是觉得把一直挂在嘴头,放在心头的大数据拿出来说说,哦不,是拿过来学学.入园前期写了有关Nutch和Solr的自己的一些阅读体会和一些尝试,挂着大数据的旗号做着爬虫的买卖.可是,时间在流失,对于大数据的憧憬从未改变,尤其是Hadoop一直让我魂牵梦绕…