=================第3周 浅层神经网络=============== ===3..1  神经网络概览=== ===3.2  神经网络表示=== ===3.3  计算神经网络的输出=== 方括号代表层数.   ===3.4  多个例子中的向量化=== ===3.5  向量化实现的解释===  方括号值的是层数,括号代表样本编号.ppt中显示的,不同row代表某一层的hidden unit,不同列代表各个样本,挺形象的呀,有趣.   ===3.6  激活函数=== tanh几乎各方…
第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[…
1. 第i层网络 Z[i] = W[i]A[i-1] + B[i],A[i] = f[i](Z[i]). 其中, W[i]形状是n[i]*n[i-1],n[i]是第i层神经元的数量: A[i-1]是第i-1层的神经元,形状是n[i-1]*p,p是样本数量: B[i]形状是n[i]*p,B[i]的每一列都是一样的,所以其实有效的参数只是n[i]个,python里直接用n[i]*1的b[i]然后boradcasting成n[i]*p方便做加法. A[0]对应输入层,n[0]是单个输入样本的特征数量.…
1. 第i层网络 Z[i] = W[i]A[i-1] + B[i],A[i] = f[i](Z[i]). 其中, W[i]形状是n[i]*n[i-1],n[i]是第i层神经元的数量: A[i-1]是第i-1层的神经元,形状是n[i-1]*p,p是样本数量: B[i]形状是n[i]*p,B[i]的每一列都是一样的,所以其实有效的参数只是n[i]个,python里直接用n[i]*1的b[i]然后boradcasting成n[i]*p方便做加法. A[0]对应输入层,n[0]是单个输入样本的特征数量.…
tensorFlow见基础 实验 MNIST数据集介绍 MNIST是一个手写阿拉伯数字的数据集. 其中包含有60000个已经标注了的训练集,还有10000个用于测试的测试集. 本次实验的任务就是通过手写数字的图片,识别出具体写的是0-9之中的哪个数字.   理论知识回顾 一个典型的浅层神经网络结构如下: 上图所示的是一个只有一层隐藏层的浅层神经网络 我们有3个输入层节点,分别对应i[1] i[2] i[3] 隐藏层有4个节点,分别对应h[0] h[1] h[2] h[3],对应的激活函数为ReL…
介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录. 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述. 1.神经网络概要 注意:这一系列的课程中用中括号表示层数,例如\(a^{[1]}\)表示第二层(隐藏层)的数据. 2.神经网络表示 这个图的内容有点多,跟着下面的步骤来理解这个图吧: 首先看蓝色字体,这个2层的神经网络(输入层一般理解成第0层)有输入层…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2 神经网络表示 对于一个由输入层,隐藏层,输出层三层所组成的神经网络来说,输入层,即输入数据被称为第0层,中间层被称为第1层,输出层被称为第2层.所以这个神经网络被称为两层神经网络,我们不把输入层当做一个标准的层. 3.3 计算神经网络的输出 对于输入层的输入,我们把输入看做是一个矩阵,对于第一层的第一个神经元结点,计算\(W^T*x+b\) 3.4 多个样本例子中的向量化 上一节讨论的是对于单个样本我们使用神经网络表示的方法,现在我…
1 神经网络概览( Neural Networks Overview ) 先来快速过一遍如何实现神经网络. 首先需要输入特征x,参数w和b,计算出z,然后用激活函数计算出a,在神经网络中我们要做多次这样的计算,反复计算z和a,然后用损失函数计算最后的a和y的差异. 可以把很多sigmoid单元堆叠起来构成一个神经网络.我们用上标方括号表示第几层,用上标圆括号表示第几个样本. 训练的时候通过反向传播来计算导数,先计算da,再计算dz,再到dw,db. 2 神经网络表示( Neural Networ…
3.1 神经网络概述(Neural Network Overview ) (神经网络中,我们要反复计算a和z,最终得到最后的loss function) 3.2 神经网络的表示(Neural Network Representation) 3.3 计算一个神经网络的输出(Computing a Neural Network's output ) 向量化计算: 详细过程见下: 公式 3.10: (W---4x3) 3.4 多样本向量化(Vectorizing across multiple exa…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51416540 看到之前的一篇博文:深入MNIST code测试,接连有读者发问,关于其中的一些细节问题,这里进行简单的答复. Tensorflow中提供的示例中MNIST网络结构比较简单,属于浅层的神经网络,只有两个卷积层和全连接层,我按照Caffe的网络结构绘制一个模型流程: 再附上每一层的具体参数网络(依旧仿照caffe的模式):…
作为图像识别与机器视觉界的 "hello world!" ,MNIST ("Modified National Institute of Standards and Technology") 数据集有着举足轻重的地位.基本上每本人工智能.机器学习相关的书上都以它作为开始. 下面我们会用 TensorFlow 搭建一个浅层的神经网络来运行 "hello world!" 模型. 以下内容和模块的运算,均在矩池云平台进行. 本次教程分五步: 第一步:数…
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训练,在MNIST数据集中每张图像的分辨率为28*28,即784维,对应于上图中的x; 而输出为数字类别,即0~9,因此上图中的y的维度维10.因此权重w的维度为[784, 10],wi,j代表第j维的特征对应的第i类的权重值,主要是为了矩阵相乘时计算的方便,具体见下面代码. 训练过程 1.训练过程中…
基础:逻辑回归 Logistic 回归模型的参数估计为什么不能采用最小二乘法? logistic回归模型的参数估计问题不能“方便地”定义“误差”或者“残差”. 对单个样本: 第i层的权重W[i]维度的行等于i层神经元的个数,列等于i-1层神经元的个数:第i层常数项b[i]b[i]维度的行等于i层神经元的个数,列始终为1. 对m个样本,用for循环不如用矩阵快,输入矩阵X的维度为(nx,m),nx是输入层特征数目. 其中,Z[1]的维度是(4,m),4是隐藏层神经元的个数:A[1]的维度与Z[1]…
1.初始化 2.前向传播 导数比较好理解 3.反向传播 全符号积分的推导看得我头有点晕 最后唤起我依稀的线代回忆 感谢吴恩达老师的反向传播讲解,第一遍看的有点晕,然后仔细看了一下又找了个B站的推导就懂了: 吴恩达老师原讲解:https://mooc.study.163.com/learn/2001281002?tid=2001392029#/learn/content?type=detail&id=2001702020&cid=2001693027 B站小姐姐的推导:https://www…
浅层神经网络 1.激活函数 在神经网络中,激活函数有很多种,常用的有sigmoid()函数,tanh()函数,ReLu函数(修正单元函数),泄露ReLu(泄露修正单元函数).它们的图形如下: sigmoid()激活函数,范围是y属于{0, 1},所以0<= y <=1.但是sigmoid函数平均收敛是1,最后的效果可能不太好. 在这个基础上有了tanh激活函数.图形如下: 主要是把sigmoid函数平移得到的.但是这样会有了优化,最终的平均收敛值为0,训练效果更好.所以在实际中,一般是选用ta…
浅层神经网络 初步了解了神经网络是如何构成的,输入+隐藏层+输出层.一般从输入层计算为层0,在真正计算神经网络的层数时不算输入层.隐藏层实际就是一些算法封装成的黑盒子.在对神经网络训练的时候,就是对神经网络的神经元求出最合适的参数. 从这图也也看出,每层神经网络的单个神经元就是一些算法计算. 并且是针对一层的每个神经元的计算逻辑都是一样的,只不过是样本不一样.因此,在这里引出向量化来简化计算. 右图看到如何把神经网络向量化 这里是m维特征输入的向量化过程. 小结 这里的笔记是第三周浅层神经网络的…
目录 前言 第一周(深度学习引言) 第二周(神经网络的编程基础) 第三周(浅层神经网络) 第四周(深层神经网络) 前言 目标: 掌握神经网络的基本概念, 学习如何建立神经网络(包含一个深度神经网络),以及如何在数据上面训练他们,最后将用一个深度神经网络进行辨认猫. (1)了解深度学习的概念 (2)了解神经网络的结构,使用算法并高效地实现 (3)结合神经网络的算法实现框架,编写实现一个隐藏层神经网络 (4)建立一个深层的神经网络(一般把层数大于等于3的神经网络称为深层神经网络) 第一周(深度学习引…
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了两个星期来介绍,可见Neural Networks内容之多.言归正传,通过之前的学习我们知道,使用非线性的多项式能够帮助我们建立更好的分类模型.但当遇特征非常多的时候,需要训练的参数太多,使得训练非常复杂,使得逻辑回归有心无力. 例如我们有100个特征,如果用这100个特征来构建一个非线性的多项式模…
Week 3 Quiz - Shallow Neural Networks(第三周测验 - 浅层神经网络) \1. Which of the following are true? (Check all that apply.) Notice that I only list correct options(以下哪一项是正确的?只列出了正确的答案) [ ]…
一.MINIST数据集下载 1.https://pjreddie.com/projects/mnist-in-csv/      此网站提供了mnist_train.csv和mnist_test.csv,其中mnist_train.csv有60000个训练数据,mnist_test.csv有10000个测试数据 2.还有两个较小数据集,可供测试. https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneura…
 =================第1周 循环序列模型=============== ===1.1 欢迎来到深度学习工程师微专业=== 我希望可以培养成千上万的人使用人工智能,去解决真实世界的实际问题,创造一个人工智能驱动的社会. ===1.2 什么是神经网络=== 实际上隐藏节点可能并没有左图那样明确的定义,你让神经网络自己决定这个节点是什么,我们只给你四个输入特征 随便你怎么计算.注意,当我们计算层数的时候,不计算输出层. ===1.3 用神经网络进行监督学习=== And then, f…
转载:http://www.csdn.net/article/2014-07-10/2820600 人工智能被认为是下一个互联网大事件,当下,谷歌.微软.百度等知名的高科技公司争相投入资源,占领深度学习的技术制高点,百度在2014年5月19日宣布曾领导谷歌的深度学习项目——Google Brain ,被誉为谷歌大脑之父的Andrew Ng加盟百度,正式领导百度研究院工作,尤其是Baidu Brain计划.7月7日,他应邀做客中国科学院自动化研究所,发表了<Deep Learning:Overvi…
深度学习概论 1.什么是神经网络? 2.用神经网络来监督学习 3.为什么神经网络会火起来? 1.什么是神经网络? 深度学习指的是训练神经网络.通俗的话,就是通过对数据的分析与计算发现自变量与因变量的映射关系(神经网络模型),这个映射关系可以是单层(一个神经元),也可以是网络(多个神经元),此过程可称为训练过程:其后根据此神经网络模型来对事物进行预测或分类. 通过一个例子来说明何为神经网络.房价的预测,影响房价的因素有很多,现在仅考虑房间大小,即只有一维特征.下图的红叉代表已知价格的房子大小,通过…
[吴恩达课后测验]Course 1 - 神经网络和深度学习 - 第一周测验[中英] 第一周测验 - 深度学习简介 和“AI是新电力”相类似的说法是什么? [  ]AI为我们的家庭和办公室的个人设备供电,类似于电力. [  ]通过“智能电网”,AI提供新的电能. [ ]AI在计算机上运行,​​并由电力驱动,但是它正在让以前的计算机不能做的事情变为可能. [★]就像100年前产生电能一样,AI正在改变很多的行业. 请注意: 吴恩达在视频中表达了同样的观点. 哪些是深度学习快速发展的原因? (两个选项…
1. 计算深度神经网络的时候,尽量向量化数据,不要用for循环.唯一用for循环的地方是依次在每一层做计算. 2. 最常用的检查代码是否有错的方法是检查算法中矩阵的维度. 正向传播: 对于单个样本,第i层网络 z[i] = W[i]a[i-1] + b[i], a[i] = f[i](z[i]). 其中,z[i]是n[i]*1,W[i]是n[i]*n[i-1],a[i-1]是n[i-1]*1,b[i]是n[i]*1. 对于向量化后的所有样本,第i层网络 Z[i] = W[i]A[i-1] + b…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度. 假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]" 为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中,哪些你到现在为止依然保持有热情的. Hinton:我认为我觉得最具学术之美的是受限Boltzmann机器,我们认为他能用很简单很简单的算法去应用到密度很高的连接起来的网络. Hinton:我仍然认为无监督学习十分重要,当我们真正搞明白一些东西以后,结果会比现在好很多.不过目前并没有找到这种方法.…
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述…
课程笔记 Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning 作业说明 Exercise 4,Week 5,实现反向传播 backpropagation神经网络算法, 对图片中手写数字 0-9 进行识别. 数据集 :ex4data1.mat.手写数字图片数据,5000个样例.每张图片20px * 20px,也就是一共400个特征.数据集X维度为5000 * 400 ex4weights.mat.神经网络每一层的权重. 文件…
本文作者 Nikolai Yakovenko 毕业于哥伦比亚大学,目前是 Google 的工程师,致力于构建人工智能系统,专注于语言处理.文本分类.解析与生成. 生成式对抗网络-简称GANs-将成为深度学习的下一个热点,它将改变我们认知世界的方式. 准确来讲,对抗式训练为指导人工智能完成复杂任务提供了一个全新的思路,某种意义上他们(人工智能)将学习如何成为一个专家. 举个对抗式训练的例子,当你试图通过模仿别人完成某项工作时,如果专家都无法分辨这项工作是你完成的还是你的模仿对象完成的,说明你已经完…