GCD-Euclidean Algorithm】的更多相关文章

You are given two jugs with capacities x and y litres. There is an infinite amount of water supply available. You need to determine whether it is possible to measure exactly z litres using these two jugs. If z liters of water is measurable, you must…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a…
int exGcd(int x,int y,int& a,int& b) //ax+by=gcd(x,y) { ; b=; return x; } int res=exGcd(y,x%y,a,b); int t=a; a=b; b=t-x/y*b; return res; } int exGcd(int x,int y,int& a,int& b) //ax+by=gcd(x,y) { ; b=; return x; } int res=exGcd(y,x%y,a,b);…
 1.来源     设两数为a.b(a>b),求a和b最大公约数(a,b)的步骤如下:用a除以b,得a÷b=q......r1(0≤r1).若r1=0,则(a,b)=b:若r1≠0,则再用b除以r1,得b÷r1=q......r2 (0≤r2).若r2=0,则(a,b)=r1,若r2≠0,则继续用r1除以r2,……如此下去,直到能整除为止.其最后一个为被除数的余数的除数即为(a, b). 例如:a=25,b=15,a/b=1......10,b/10=1......5,10/5=2.......…
GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知识点:   欧拉函数.http://www.cnblogs.com/shentr/p/5317442.html 题解一: 当M==1时,显然答案为N. 当M!=1.  X是N的因子的倍数是 gcd(X,N)>1 && X<=N 的充要条件.so  先把N素因子分解, N=     …
GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For examp…
GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1997    Accepted Submission(s): 772 Problem Description Do you have spent some time to think and try to solve those unsolved problem aft…
GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2673    Accepted Submission(s): 1123 Problem Description Do you have spent some time to think and try to solve those unsolved problem af…
GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2611    Accepted Submission(s): 1090 Problem Description Do you have spent some time to think and try to solve those unsolved problem a…
欧几里得算法求最大公约数 If A = 0 then GCD(A,B)=B, since the GCD(0,B)=B, and we can stop. If B = 0 then GCD(A,B)=A, since the GCD(A,0)=A, and we can stop. Write A in quotient remainder form (A = B⋅Q + R) Find GCD(B,R) using the Euclidean Algorithm since GCD(A,B)…