dC Loves Number Theory 题目大意:dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源. 给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 + 777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时,lastans = 0) 数据范围:1<=N<=50000…
根据欧拉函数的定义式可知,可以先算出a[l]*a[l+1]*...*a[r]的值,然后枚举所有存在的质因子*(p-1)/p. 发现这里区间中一个质因子只要计算一次,所以指计算“上一个同色点在区间外”的数.记录pre就是二维数点问题了,套路地用主席树即可. 被卡常.别的OJ过了BZOJ过不了,优化常数后别的OJ速度快一倍BZOJ还是过不了. #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=(l);…
题目大意:给你一个序列,求出指定区间的(l<=i<=r) mod 1000777 的值 还复习了欧拉函数以及线性筛逆元 考虑欧拉函数的的性质,(l<=i<=r),等价于 (p[j]是区间内所有出现过的质数) 那么考虑找出区间内所有出现过的质数,这思路和HH的项链是不是很像?? 由于此题强制在线,所以把树状数组替换成了主席树而已 原来我以前写的主席树一直都是错的......还好推出了我原来错误代码的反例 在继承上一个树的信息时,注意不要破坏现在的树 #include <cstd…
题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10610^610​6​​ + 777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时,lastans = 0) 输入格式 第一行,两个正整数,N,Q,表示序列的长度和询问的个数…
链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质因数,由于不同的质因数只算一次,所以我们只关心每个质数它最后一次出现的位置,开一棵线段树维护一下每个位置的质数,加入新的质数时,先把之前的删掉,再加新的 现在强制在线,可以开可持久化线段树维护一下 #include<bits/stdc++.h> #define REP(i,a,b) for(int…
Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯 竭的水题资源.    给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的 φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 +  777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时, lastans = 0)  Input 第一行,两个正整数,N,Q,表示序列…
Description 给定n,m,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\varphi(ij)\)模10^9+7的值. Input 仅一行,两个整数n,m. Output 仅一行答案. Sample Input 100000 1000000000 Sample Output 857275582 数据规模 1<=n<=10^5,1<=m<=10^9. sol %%%ranwen!!! 前置技能: \(n=\sum_{d|n}\varphi(d)\) \(\v…
方块切割 题目链接:https://cometoj.com/contest/39/problem/C?problem_id=1583 数据范围:略. 题解: 首先,如果我们知道了多少道在行上,多少刀在列上,应该怎么办? 不难发现行和列是独立的,只需要分别保证各自均分了网格即可. 那么怎么切呢?只需要顺次枚举,能切就切即可. 至于怎么知道行和列各自切多少刀? 枚举呗 代码: #include <bits/stdc++.h> #define N 1010 using namespace std;…
[BZOJ4026]dC Loves Number Theory Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.    给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 + 777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时,lastans =…
BZOJ_4026_dC Loves Number Theory _主席树+欧拉函数 Description  dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯 竭的水题资源.    给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的 φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 +  777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,…
题目描述 dC 在秒了BZOJ 上所有的数论题后,感觉萌萌哒,想出了这么一道水题,来拯救日益枯竭的水题资源.  给定一个长度为 n的正整数序列A,有q次询问,每次询问一段区间内所有元素乘积的φ(φ(n)代表1~n 中与n互质的数的个数) .由于答案可能很大,所以请对答案 mod 10^6 + 777. (本题强制在线,所有询问操作的l,r都需要 xor上一次询问的答案 lastans,初始时,lastans = 0)  输入 第一行,两个正整数,N,Q,表示序列的长度和询问的个数. 第二行有N…
poj 2104 K-th Number(主席树) 主席树就是持久化的线段树,添加的时候,每更新了一个节点的线段树都被保存下来了. 查询区间[L,R]操作的时候,只需要用第R棵树减去第L-1棵树就是区间[L,R]中增加的元素对应的树,然后查询这棵两棵树的差值对应的树就可以达到我们的目的. 每增加一个节点,必然有一条边被改变,那条边上的所有节点都会被改变.除这条边之外的其它节点用的是上一棵树的. K-th Number Time Limit: 20000MS   Memory Limit: 655…
把我写吐了 太弱了 首先按照欧拉函数性质 我只需要统计区间不同质数个数就好了 一眼主席树 其次我被卡了分解质因数这里 可以通过质数筛时就建边解决 不够灵性啊,不知道如何改 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int N = 1e6+1000; const int H = 5e4+5; const int M = H*100; const int mod = 1e6+777; int i…
3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 755  Solved: 432[Submit][Status][Discuss] Description 在一片美丽的大陆上有100000个国家,记为1到100000.这里经济发达,有数不尽的账房,并且每个国家有一个银行.某大公司的领袖在这100000个银行开户时都存了3大洋,他惜财如命,因此会不时地派小弟GFS清点一些银行的存款或者让GFS改变某个银行的存款.该村子在财产上的求…
题面 传送门 思路 这题目是真的难读......阅读理解题啊...... 但是理解了以后就发现,题目等价于: 给你一个区间,支持单点修改,以及查询一段区间的乘积的欧拉函数值,这个答案对19961993取模 这里是欧拉函数的原因显然,题目中的那个不相冲实际上就是扩展欧几里得里面的那个定理,要满足不相冲(也就是方程有解),$product$和$number$必须互质 序列当中,每个元素大小不超过1e6,质因数都是前60个 那么我们显然可以开一棵线段树来维护这个区间乘积,但是怎么处理欧拉函数呢?$O(…
分析:对于每个数,找到欧拉函数值大于它的,且标号最小的,预处理欧拉函数,然后按值建线段树就可以了 #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <cmath> #include <map> using namespace std; typedef long long LL; ; const int INF…
传送门:Bi-shoe and Phi-shoe 题意:给出多个n(1<=n<=1e6),求满足phi(x)>=n的最小的x之和. 分析:先预处理出1~1e6的欧拉函数,然后建立一颗线段树维护最大值,对于每个n询问大于等于n的最左边下标. #pragma comment(linker,"/STACK:1024000000,1024000000") #include <cstdio> #include <cstring> #include <…
BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10^7 Output 按读入顺序输出答案. Sample Input 1 10 Sample Output 136 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\varphi(gcd(i,j))$ $=\sum\limits_{i=1}^{n}\sum\lim…
这题我在考场上也是想出了正解的……但是没调出来. 题目链接:CF原网 题目大意:给一个长度为 $n$ 的序列 $a$,$q$ 个操作:区间乘 $x$,求区间乘积的欧拉函数模 $10^9+7$ 的值. $1\le n\le 4\times 10^5,1\le q\le 2\times 10^5,1\le a_i,x\le 300$.时限 5.5s,空限 256MB. 明显线段树. 有一个想法是维护区间积的欧拉函数,但是这样时间复杂度和代码复杂度都很高…… 我的做法是维护区间积.而欧拉函数,就是看看…
https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1. 将a[l,r]的数字乘以x(x<=300) 2. 求\(\varphi(\prod_{i=l}^ra[i])\)对1e9+7取模 题解 欧拉函数性质 假如\(p\)是一个质数,\(\varphi(p)=p-1\),\(\varphi(p^k)=p^{k-1}*(p-1)=p^k*\frac{p-1}…
[bzoj3813]: 奇数国 题意:给定一个序列,每个元素可以分解为最小的60个素数的形式.(x=p1^k1*p2^k2*......p60^k60)(p1=2,p2=3,…,p60=281) 支持单点修改,查询一段区间的积的欧拉函数 mod 19961993(是一个质数). 线段树维护区间积x,bitset b[i]记录第i个素数是否存在. 预处理inv[i]=(p[i]-1)/p[i] mod 19961993 ans=x*inv[i] (b[i]==1) /* http://www.cn…
ACM训练联盟周赛 这一场有几个数据结构的题,但是自己太菜,不会树套树,带插入的区间第K小-替罪羊套函数式线段树, 先立个flag,BZOJ3065: 带插入区间K小值 计蒜客 Zeratul与Xor 赛后知道这是个01字典树的题目(嘤嘤嘤???) 这一场写了两道(具体来说就一道)就开溜了,但是计蒜客上这个比赛貌似没有赛后补题,但是有差不多的题目,所以去补那些题就可以了. 有题库链接,可以补题了. G. 算个欧拉函数给大家助助兴 这个题和上一场的 F.Divisions,其实就是一样的题目,代码…
AC通道 要点 欧拉函数对于素数有一些性质,考虑将输入数据唯一分解后进行素数下的处理. 对于素数\(p\)有:\(\phi(p^k)=p^{k-1}*(p-1)=p^k*\frac{p-1}{p}\),因此将\(a_i\)唯一分解后有:\(\phi(\prod_{i=l}^ra_i)=\prod_{i=l}^ra_i*\prod_{p\ \in P}\frac{p-1}{p}\),其中\(P\)是\([l,r]\)内的\(a_i\)分解后的素数集合. 这样转化公式以后,就只需线段树维护一下区间乘…
BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数. Input 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模…
题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ \begin{aligned} \phi(x)&=\phi(\prod\limits_{i=1}^{n}p_i^{c_i})&\\ &=\prod\limits_{i=1}^{n}\phi(p_i^{c_i})&\\ &=\prod\limits_{i=1}^{n}p_…
HYSBZ - 3813奇数国 中文题,巨苟题,巨无敌苟!!首先是关于不相冲数,也就是互质数的处理,欧拉函数是可以求出互质数,但是这里的product非常大,最小都2100000,这是不可能实现的.所以我们要求互质数的话,得用到所有金额都用60个素数表示的这个条件.也就是x=p1a1xp2a2x...p60a60表示,pi是第i个素数,ai是对应的指数,这就变成了互质素求欧拉函数,可以先了解一下欧拉函数,引用一下境外大佬的博客欧拉函数的讲解.我们需要用到这一条 p为质数 1. phi(p)=p-…
调了半天,写线段树老是写炸 /* 两个操作 1.区间乘法 2.区间乘积询问欧拉函数 欧拉函数计算公式 phi(mul(ai))=mul(ai) * (p1-1)/p1 * (p2-1)/p2 * .. * (pk-1)/pk 因为只有300以内的质数(62个)用一个long long来状态压缩 因此线段树结点维护住区间的质数状态集合S,区间的乘积 操作1 [l,r] x:把x质因数分解,然后更新S,然后再更新乘积, 操作2 [l,r]:询问到区间的状态集合S,区间的乘积,再求逆元进行除法 先把6…
A. 神炎皇 很好的一道题,可能第一次在考场上遇到欧拉函数 题意:对于一个整数对 $(a,b)$,若满足 $a\times b\leq n$且$a+b$是$a\times b$的因子, 则称为神奇的数对.问这样的数对共有个? 首先式子同时除一个$gcd(a,b)$,那么设$d=gcd(a,b)$,则$a=A/d,b=B/d$, 所以因为$a$,$b$,中已经将因子全部提出,所以$a\times b$与$a+b$是互质的 然后设$k$为$d/(a+b)$,显然$k\times (a+b)\time…
题目 Source http://poj.org/problem?id=2104 Description You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return q…
Description You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array…