最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究院的两个数据集构建而成.训练集中包含250个人的手写数字,其中50%是高中生,50%来自人口调查局.每个训练集的数字图片像素为28x28.MNIST数据集可通过 下载链接 下载,它包含以下内容: 训练集图像:train-images-idx3-ubyte.gz,包含60000个样本 训练集类标:tr…
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新. 手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount…
卷积神经网络目前被广泛地用在图片识别上, 已经有层出不穷的应用, 如果你对卷积神经网络充满好奇心,这里为你带来pytorch实现cnn一些入门的教程代码 #首先导入包 import torchfrom torch.autograd import Variableimport torch.nn as nnimport torchvisionimport torch.utils.data as Data #一.数据准备 #训练数据:用了torchvision.datasets.MNIST,root是…
写在开头:这个实验和matlab手写神经网络实现识别手写数字一样. 实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手写数字图片,于是我就尝试用matlab写一个网络. 实验数据:5000张手写数字图片(.jpg),图片命名为1.jpg,2.jpg-5000.jpg.还有一个放着标签的excel文件. 数据处理:前4000张作为训练样本,后1000张作为测试样本. 图片处理:用matlab的imread()函数读取…
在之前的一章中我们讲到的keras手写数字集的识别中,所使用的loss function为‘mse’,即均方差.那我们如何才能知道所得出的结果是不是overfitting?我们通过运行结果中的training和testing即可得知. 源代码与运行截图如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/9/9 13:23 # @Author : BaoBao # @Mail : baobaotql@163.com #…
一.前述 本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类. 同时对模型的保存和恢复做下示例. 二.具体原理 代码一:实现代码 #!/usr/bin/python # -*- coding: UTF-8 -*- # 文件名: 12_Softmax_regression.py from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # mn.SOURCE…
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNIST数据.如果有 github 账号,你可以将这些代码库克隆下来, git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 或者你可以到这里 下载. 顺便说一下, 当我先前说到 MNIST 数据集时,我说…
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写阿拉伯数字识别是图像内容识别中较为简单的一个应用领域,原因有被识别的模式数较少(只有0到9,10个阿拉伯数字).阿拉伯数字笔画少并且简单等.手写阿拉伯数字的识别采用的方法相对于人脸识别.汉字识别等应用领域来说可以采用更为灵活的方法,例如基于规则的方法.基于有限状态自动机的方法.基于统计的方法和基于神…
本文主要是用kNN算法对字母图片进行特征提取,分类识别.内容如下: kNN算法及相关Python模块介绍 对字母图片进行特征提取 kNN算法实现 kNN算法分析 一.kNN算法介绍 K近邻(kNN,k-NearestNeighbor)分类算法是机器学习算法中最简单的方法之一.所谓K近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.我们将样本分为训练样本和测试样本.对一个测试样本 t  进行分类,kNN的做法是先计算样本 t  到所有训练样本的欧氏距离,然后从中找出k…
实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手写数字图片,于是我就尝试用matlab写一个网络. 实验数据:5000张手写数字图片(.jpg),图片命名为1.jpg,2.jpg-5000.jpg.还有一个放着标签的excel文件. 数据处理:前4000张作为训练样本,后1000张作为测试样本. 图片处理:用matlab的imread()函数读取图片的灰度值矩阵(28,28),然后把每张图片的灰度值矩阵resha…