numpy数组常用计算】的更多相关文章

在说numpy库数组的计算之前先来看一下numpy数组形状的知识: 创建一个数组之后,可以用shape来查看其形状,返回一个元组 例如:a = np.array([[1, 2, 3], [4, 5, 6]])     print(a.shape)   # 打印出 (2,3) 其它的一维二维或三维数组也是同理,打印出对应形状的元组 修改数组的形状可以用 reshape() 函数,参数传入一个元组 例如:b = a.reshape((3, 2)) print(b.shape)    # 打印出(3,…
一.数组和数的计算 数组和数计算,数组中的每个元素和数进行计算 1.加 import numpy as np arr1 = np.arange(12).reshape(3, 4) print(arr1) # 数组的每个元素和数进行加法运算 arr2 = arr1 + 2 print(arr2) 2.减 import numpy as np arr1 = np.arange(12).reshape(3, 4) # 数组的每个元素和数进行减法运算 arr2 = arr1 - 2 print(arr2…
1.数组的形状 查看数组的形状: import numpy as np a = np.array([[1, 2, 3, 4, 5], [5, 6, 7, 8, 9]]) print(a.shape) (2, 5) 二行五列 改变数组的形状: import numpy as np a = np.array([[1, 2, 3, 4, 5], [5, 6, 7, 8, 9]]) print(a.reshape(5, 2)) # 这里注意改变形状所对应的元素个数必须一样 5*2=10个 [[1 2]…
Python的默认实现(CPython)处理某些操作非常慢,因为动态性和解释性, CPython 在每次循环必须左数据类型的检查和函数的调度..在编译是进行这样的操作.就会加快执行速度. 通用函数介绍 Numpy 为很多类型的操作提供了方便的.静态类型的.可编译程序的接口.叫做向量操作. 对数组的操作会用于数组的每一个元素. 也可以对俩个数组进行运算 探索通用函数 俩种存在形式 一元通用函数 unary ufunc 对单个输入操作 二元通用函数 binary ufunc 对俩个输入操作 1)数组…
Numpy的通用函数可以用来替代循环, 快速实现数组的逐元素的 运算 同样,使用其他通用函数实现数组的逐元素的 比较 < > 这些运算结果 是一个布尔数据类型的数组. 有6种标准的比较操作 小于,大于,小于等于,大于等于, 不等于, 等于 x > 3 x <= 3 x >= 3 x != 3 x == 3 复合表达式 对应的通用函数 Operator Equivalent ufunc Operator Equivalent ufunc == np.equal != np.no…
广播可以简单理解为用于不同大小数组的二元通用函数(加减乘等)的一组规则 二元运算符是对相应元素逐个计算 广播允许这些二元运算符可以用于不同大小的数组 更高维度的数组 更复杂的情况,对俩个数组的同时广播 a + b 广播可视化 浅色的盒子代表广播的值, ps:额外的内存并没有在实际操作中分配. ## 广播的规则 规则1: 如果俩个数组的维度数不相同,那么小维度数组的形状将会在最左边补1, 规则2: 如果俩个数组的形状在任何一个维度上都不匹配,那么数组的形状会沿着维度为1 的维度开始扩展 ,(维度必…
操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, 13, 14]),) x[indices] # this indexing is equivalent to the fancy indexing x[mask] => array([ 5.5, 6. , 6.5, 7. ]) diag 使用 diag 函数能够提取出数组的对角线: diag(A) =…
一.介绍 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. 1.主要功能 1)ndarray,一个多维数组结构,高效且节省空间2)无需循环对整组数据进行快速运算的数学函数3)读写磁盘数据的工具以及用于操作内存映射文件的工具4)线性代数.随机数生成和傅里叶变换功能5)用于集成C.C++等代码的工具 2.安装方法 pip install numpy 3.引用方法 import numpy as np 二.ndarray-多维数组对象 创建ndarray:np.ar…
In [1]: import numpy as np In [11]: # 创建数组 a = np.array([1,2,3,4,5]) In [12]: a Out[12]: array([1, 2, 3, 4, 5]) In [9]: np.array(range(1,6)) Out[9]: array([1, 2, 3, 4, 5]) In [10]: np.arange(1,6) Out[10]: array([1, 2, 3, 4, 5]) In [13]: # 数组的类名 type(…
Numpy.frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数 不再通过遍历,对数组中的元素进行运算,利用frompyfunc()将计算单个值的函数转化为计算数组中每个元素的函数 下面是示例代码: # -*- coding: utf-8 -*- """ Created on Fri Nov 20 17:18:11 2020 @author: pan """ import time import numpy as np arr…