MLE & MAP】的更多相关文章

MLE & MAP : data / model parameter MLE: (1) keep the data fixed(i.e., it has been observed) and allow the parameters to vary (2) the likelihood function can tell you the likelihood of any particular parameter setting (3) 因此,MLE会针对某一特定data,调出最合适的参数 (4…
1.最大似然估计 (MLE):  什么是最大似然估计?     问题:给定一组观察数据还有一个参数待定的模型,如何来估计这个未知参数呢? 观察数据(x1,y1)......(xn,yn)   待定模型参数为θ,模型为f(x;θ).这时候可以借助观察数据来估计这个θ.这就是最大似然函数估计.      举个例子:         假设我们有一个袋子,里面装着白球和黑球,但是我们不知道他们分别有多少个,这时候需要我们估计每次取出一个球是白球的概率是多少?如何估计呢? 可以通过连续有放回的从袋子里面取…
https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 频率学派 - Frequentist - Maximum Likelihood Estimation (MLE,最大似然估计) 贝叶斯学派 - Bayesian - Maximum A Posteriori (MAP,最大后验估计) 概述 有时候和别人聊天,对方会说自己有很多机器学习经验,深入一聊发现,对方竟然对MLE和MAP一知半解,至少在我看来,这位同学的机器学习基础并…
今天,也没出去,晚上宿舍没有人,自己思考了下人生,毕设还是大事,觉得现在有必要把LDA从前往后彻彻底底的读一遍了,因为现在的感觉就是什么都知道一点皮毛,但是理解的都不深,LDA好像(恩,相当不好)现在理解的不是很好,涉及的内容挺多,细分的话有: 1)参数估计 MLE MAP 2)Bayes Estimation 3)随机采样 4)各种基于 MCMC 的采样方法 :Gibbs LDA Sparse LDA ,Alias LDA,WarpLDA 4)分布式实现 5)应用 放在新闻推荐上? 这个具体看…
1.1.10. Bayesian Ridge Regression 首先了解一些背景知识:from: https://www.r-bloggers.com/the-bayesian-approach-to-ridge-regression/ In this post, we are going to be taking a computational approach to demonstrating the equivalence of the bayesian approach and ri…
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,…
最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为…
频率学派(古典学派)和贝叶斯学派是数理统计领域的两大流派. 这两大流派对世界的认知有本质的不同:频率学派认为世界是确定的,有一个本体,这个本体的真值是不变的,我们的目标就是要找到这个真值或真值所在的范围:而贝叶斯学派认为世界是不确定的,人们对世界先有一个预判,而后通过观测数据对这个预判做调整,我们的目标是要找到这个世界的概率分布的最优表达. 本科期间学习的概率论与数理统计更多涉及的是频率学派的经典统计学观点,贝叶斯学派的观点也有接触,但是难以分清楚二者的区别.所以整理这篇博客,梳理关于这两个学派…
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/u011508640/article/details/72815981 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两…
[机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.先讲解MLE的相应知识.…