1. 在计算出混淆矩阵之后,想自己绘制图形(并且在图形上显示汉字),可用 #coding=utf-8 import matplotlib.pyplot as plt import numpy as np confusion = np.array(([91,0,0],[0,92,1],[0,0,95])) # 热度图,后面是指定的颜色块,可设置其他的不同颜色 plt.imshow(confusion, cmap=plt.cm.Blues) # ticks 坐标轴的坐标点 # label 坐标轴标签…
混淆矩阵(Confusion Matrix),是一种在深度学习中常用的辅助工具,可以让你直观地了解你的模型在哪一类样本里面表现得不是很好. 如上图,我们就可以看到,有一个样本原本是0的,却被预测成了1,还有一个,原本是2的,却被预测成了0. 简单介绍作用后,下面上代码: import seaborn as sns from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt 导入需要的包,如果有一些包没有…
1为黑样本,0为白样本: Counter({1: 105, 0: 95}) check counter!confusion_matrix:[[83 12(预测值为1,实际为0,误报)] [15(预测值为0,实际为1,漏报!) 90]] 因为样本不均衡的分类器需要着重关注,因此注意下!…
分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些指标来评价. 本文对分类问题的常见评价指标进行介绍,并附上利用sklearn库的python实现. 将从以下三个方面分别介绍: 常用评价指标 混淆矩阵绘制及评价指标计算 ROC曲线绘制及AUC计算 1. 常用评价指标 混淆矩阵(confusion matrix) 一般用来描述一个分类器分类的准确程度…
评估分类器性能的度量,像混淆矩阵.ROC.AUC等 内容概要¶ 模型评估的目的及一般评估流程 分类准确率的用处及其限制 混淆矩阵(confusion matrix)是如何表示一个分类器的性能 混淆矩阵中的度量是如何计算的 通过改变分类阈值来调整分类器性能 ROC曲线的用处 曲线下面积(Area Under the Curve, AUC)与分类准确率的不同   1. 回顾¶ 模型评估可以用于在不同的模型类型.调节参数.特征组合中选择适合的模型,所以我们需要一个模型评估的流程来估计训练得到的模型对于…
一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图:  第一个参数true,false是指预测的正确性.  第二个参数true,postitives是指预测的结果.  相关公式: 检测正列的效果: 检测负列的效果: 公式解释: fp_rate: tp_rate: recall:(召回率) 值越大越好 presssion:(准确率) TP:本来是正例,通过模型预测出来是正列 TP+FP:通过模型预测出来的所有正列数(其中包括本来…
一.混淆矩阵 (一).简介 在人工智能中,混淆矩阵(confusion matrix)是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵.在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面.混淆矩阵是通过将每个实测像元的位置和分类与分类图像中的相应位置和分类像比较计算的. 混淆矩阵(confusion matrix)刻画一个分类器的分类准确程度.“混淆”一词也形象地表达了分类器面对多个分类时可能造成的混淆. (二).混淆矩阵(Confusio…
一.Python绘制折线图 1.1.Python绘制折线图对应代码如下图所示 import matplotlib.pyplot as pltimport numpy as np from pylab import mplmpl.rcParams['font.sans-serif'] = ['STZhongsong'] # 指定默认字体:解决plot不能显示中文问题mpl.rcParams['axes.unicode_minus'] = False #plt.figure(dpi=300,figs…
Python绘制PDF文件 项目简介 这次项目很简单,本次项目课,代码不超过40行,主要是使用 urllib和reportlab模块,来生成一个pdf文件. reportlab官方文档 http://www.reportlab.com/docs/reportlab-userguide.pdf 我们看看这个网页上的原数据: http://www.swpc.noaa.gov/ftpdir/weekly/Predict.txt 代码: #-*- coding: utf-8 -*- # 1. 用于下载原…
一.前言 表征分类精度的指标有很多,其中最常用的就是利用混淆矩阵.总体分类精度以及Kappa系数. 其中混淆矩阵能够很清楚的看到每个地物正确分类的个数以及被错分的类别和个数.但是,混淆矩阵并不能一眼就看出类别分类精度的好坏,为此从混淆矩阵衍生出来各种分类精度指标,其中总体分类精度(OA)和卡帕系数(Kappa)应用最为广泛. 总体分类精度(OA):指被正确分类的类别像元数与总的类别个数的比值:OA值虽然能很好的表征分类精度,但是对类别像元个数极度不平衡的多类地物来说,其值收到像元数据较多类别的影…
Axes3D.plot(xs, ys, *args, **kwargs) 绘制2D或3D数据 参数 描述 xs, ys X轴,Y轴坐标定点 zs Z值,每一个点的值都是1 zdir 绘制2D集合时使用z的方向 其他的参数:plot() Python代码: import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt mpl.rc…
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切,所以在了解这些评价指标之前,先知道什么是混淆矩阵很有必要,也方便记忆. 1.混淆矩阵 对于一个二分类问题,我们可以得到如表 1所示的的混淆矩阵(confusion matrix): 表…
python 绘制柱状图 import matplotlib.pyplot as plt import numpy as np # 创建一个点数为 8 x 6 的窗口, 并设置分辨率为 80像素/每英寸 plt.figure(figsize=(8, 6), dpi=80) # 再创建一个规格为 1 x 1 的子图 plt.subplot(1, 1, 1) # 柱子总数 N = 6 # 包含每个柱子对应值的序列 values = (25, 32, 34, 20, 41, 50) # 包含每个柱子下…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
作者:十岁的小男孩 凡心所向,素履可往 目录 监督学习—混淆矩阵 是什么?有什么用?怎么用? 非监督学习—匹配矩阵 混淆矩阵 矩阵每一列代表预测值,每一行代表的是实际的类别.这个名字来源于它可以非常容易的表明多个类别是否有混淆(也就是一个class被预测成另一个class). 假设有一个用来对猫(cats).狗(dogs).兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结.假设总共有 27 只动物:8只猫, 6条狗, 13只兔子.结果的混淆矩阵如上…
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. 混淆矩阵是模式识别中的常用工具,在PRTools工具箱中有直接的函数confmat可供引用.具体使用方法如下所示: [C,NE,LABLIST] = CONFMAT(LAB1,LAB2,METHOD,FID) INPUT LAB1 Set of labels LAB2 Set of labels METHOD 'count' (default) to coun…
原理 在机器学习中, 混淆矩阵是一个误差矩阵, 常用来可视化地评估监督学习算法的性能. 混淆矩阵大小为 (n_classes, n_classes) 的方阵, 其中 n_classes 表示类的数量. 这个矩阵的每一行表示真实类中的实例, 而每一列表示预测类中的实例 (Tensorflow 和 scikit-learn 采用的实现方式). 也可以是, 每一行表示预测类中的实例, 而每一列表示真实类中的实例 (Confusion matrix From Wikipedia 中的定义). 通过混淆矩…
本文整理了关于机器学习分类问题的评价指标——Confusion Matrix.ROC.AUC的概念以及理解. 混淆矩阵 在机器学习领域中,混淆矩阵(confusion matrix)是一种评价分类模型好坏的形象化展示工具.其中,矩阵的每一列表示的是模型预测的样本情况:矩阵的每一行表示的样本的真实情况. 举个经典的二分类例子: 混淆表格:                 混淆矩阵是除了ROC曲线和AUC之外的另一个判断分类好坏程度的方法,通过混淆矩阵我们可以很清楚的看出每一类样本的识别正误情况.…
最近在忙考试的事情,没什么时间敲代码,一个月也没几天看代码,最近看到可视化的词云,看到网上也很多这样的工具, 但是都不怎么完美,有些不支持中文,有的中文词频统计得莫名其妙.有的不支持自定义形状.所有的都不能自定义颜色 于是网上找了一下,决定用python绘制词云,主要用到的是wordcloud库,安装只需要pip isntall wordcloud就行, 数据用的是酒店评论的数据,代码如下: # -*- coding: utf-8 -*- import matplotlib.pyplot as…
用Python 绘制分布(折线)图,使用的是 plot()函数. 一个简单的例子: # encoding=utf-8 import matplotlib.pyplot as plt from pylab import * # 支持中文 mpl.rcParams['font.sans-serif'] = ['SimHei'] # 'mentioned0cluster', names = ['mentioned1cluster','mentioned2cluster', 'mentioned3clu…
用Python 绘制 柱状图,使用的是bar()函数. 一个简单的例子: # 创建一个点数为 8 x 6 的窗口, 并设置分辨率为 80像素/每英寸 plt.figure(figsize=(10, 10), dpi=80) # 再创建一个规格为 1 x 1 的子图 # plt.subplot(1, 1, 1) # 柱子总数 N = 10 # 包含每个柱子对应值的序列 values = (56796,42996,24872,13849,8609,5331,1971,554,169,26) # 包含…
Python绘制六种可视化图表详解,三维图最炫酷!你觉得呢? 可视化图表,有相当多种,但常见的也就下面几种,其他比较复杂一点,大都也是基于如下几种进行组合,变换出来的.对于初学者来说,很容易被这官网上众多的图表类型给吓着了,由于种类太多,几种图表的绘制方法很有可能会混淆起来. 因此,在这里,我特地总结了六种常见的基本图表类型,你可以通过对比学习,打下坚实的基础. 私信回复[数据分析]可获取数据分析相关书籍 1. 折线图 绘制折线图,如果你数据不是很多的话,画出来的图将是曲折状态,但一旦你的数据集…
来自:https://www.jb51.net/article/139349.htm 3D图形在数据分析.数据建模.图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行3D图形的绘制,包括3D散点.3D表面.3D轮廓.3D直线(曲线)以及3D文字等的绘制. 准备工作: python中绘制3D图形,依旧使用常用的绘图模块matplotlib,但需要安装mpl_toolkits工具包,安装方法如下:windows命令行进入到python安装目录下的Scripts文件夹…
利用 Python django 框架 输入汉字,数字,字符,等..转成二维码! 模块必备:Python环境 + pillow  + qrcode 模块 核心代码import qrcode qr = qrcode.QRCode( version=2, error_correction=qrcode.constants.ERROR_CORRECT_L, box_size=20, border=4, ) qr.add_data('你要生成的文件') qr.make(fit=True) img = q…
转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839 略有改动,仅供个人学习使用 简介 混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法. 一句话解释版本:混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来.这个表就是混淆矩阵. 数据分析与挖掘体系位置 混淆矩阵是评判模型结果的指标,属于模型评估的一部分.此外,混淆矩阵多用于判断分类…
案例背景 银行评判用户的信用考量规避信用卡诈骗 ▒ 数据 数据共有 31 个特征, 为了安全起见数据已经向了模糊化处理无法读出真实信息目标 其中数据中的 class 特征标识为是否正常用户 (0 代表正常, 1 代表异常) ▒ 目标 本质依旧是一个分类问题, 0/1 的问题判断是否为信用卡诈骗用户 而在数据中 class 已经进行标识, 而且这次的样本数据的两项结果是极度的不均衡 既正常用户的样本数量是远远大于异常数据的. 不均衡的数据处理方式可以进行 下采样, 或者上采样 ▨ 下采样 -  对…
1.展现混淆矩阵 import matplotlib.pyplot as plt import itertools def plot_confusion_matrix(cm, classes, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. cm:混淆矩阵值 classes:分类标签 """…
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. 准确率 准确率是最好理解的评价指标,它是一个比值: \[ 准确率 = \cfrac{算法分类正确的数据个数}{输入算法的数据的个数} \] 但是使用准确率评价算法有一个问题,就是在数据的类别不均衡,特别是有极偏的数据存在的情况下,准确率这个评价指标是不能客观评价算法的优劣的.例如下面这个例子: 我们…
代码参考博客原文: https://blog.csdn.net/jiongnima/article/details/84750819 在原文和原文的引用里,找到了关于mIoU详尽的解释.这里重点解析 fast_hist(a, b, n) 这个函数的代码. 生成混淆矩阵的代码: #设标签宽W,长H def fast_hist(a, b, n):#a是转化成一维数组的标签,形状(H×W,):b是转化成一维数组的标签,形状(H×W,):n是类别数目,实数(在这里为19) ''' 核心代码 ''' k…
混淆矩阵 衡量一个分类器性能的更好的办法是混淆矩阵.它基于的思想是:计算类别A被分类为类别B的次数.例如在查看分类器将图片5分类成图片3时,我们会看混淆矩阵的第5行以及第3列. 为了计算一个混淆矩阵,我们首先需要有一组预测值,之后再可以将它们与标注值(label)进行对比.我们也可以在测试集上做预测,但是最好是先不要动测试集(测试集仅需要在最后的阶段使用,在我们有了一个准备上线的分类器后,最后再用测试集测试性能).接下来,我们可以使用cross_val_predict() 方法: from sk…