Hadoop_18_MapRduce 内部的shuffle机制】的更多相关文章

1.Mapreduce的shuffle机制: Mapreduce中,map阶段处理的数据如何传递给Reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle 将maptask处理后的输出结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序 MapReduce程序的执行过程分为两个阶段:Mapper阶段和Reducer阶段. 1.MapReduce的Map阶段: 1.1.从HDFS读取数据: 由FileInputFormat实现类的g…
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计算出MapTask的数量 (以一个MapTask为例) 5.Maptask调用inputFormat生成RecordReader,将自己处理的切片文件内容打散成K,V值 6.MapTask将打散好的K,V值交给Mapper,Mapper经过一系列的处理将KV值写出 7.写出的KV值被outputCo…
1. 概述 Map 方法之后,Reduce 方法之前的数据处理过程称之为 Shuffle. 2. Partition 分区 需求:要求将统计结果按照条件输出到不同文件中(分区).比如:将统计结果按照手机归属地,不同省份输出到不同文件中(分区). // 默认 Partitioner 分区 public class HashPartitioner<K, V> extends Partitioner<K, V> { public int getPartition(K key, V val…
shuffle机制 1:每个map有一个环形内存缓冲区,用于存储任务的输出.默认大小100MB(io.sort.mb属性),一旦达到阀值0.8(io.sort.spill.percent),一个后台线程把内容写到(spill)磁盘的指定目录(mapred.local.dir)下的新建的一个溢出写文件. 2:写磁盘前,要partition,sort.如果有combiner,combine排序后数据. 3:等最后记录写完,合并全部溢出写文件为一个分区且排序的文件. 4:Reducer通过Http方式…
MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量. Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时.输出结果须要按key哈希.而且分发到每个Reducer上去.这个过程就是shuffle.因为shu…
Qt 的内部进程通信机制 续欣 (xxin76@hotmail.com), 博士.大学讲师 2004 年 4 月 01 日 Qt 作为一种跨平台的基于 C++ 的 GUI 系统,能够提供给用户构造图形用户界面的强大功能.自从 1996 年 Qt 被 Trolltech 公司发布以来,该系统成为世界上很多成功的图形用户应用所使用的主要系统.更为重要的是,Linux 操作系统的桌面环境系统 KDE 也是基于 Qt 构造的.目前,Qt 已经提供了对包括 MS/Windows.Unix/X11 和嵌入式…
AsnycTask的内部的实现机制 写在前面 我们为什么要用AsnycTask. 在Android程序开始运行的时候会单独启动一个进程,默认情况下所有 这个程序操作都在这个进程中进行.一个Android程序默认情况下只有 一个进程,但是一个进程却是可以有许线程的. 我们通常会把一些比较耗时的操作,例如网络请求.数据库操作.复杂计算等逻辑都封装到单独的线程,这样就可以避免阻塞主线程. 内部机制 主要分为两大部分: 1.与主线的交互,它内部实例化了一个静态的自定义类InternalHand- ler…
MapReduce实例2(自定义compare.partition)& shuffle机制 实例:统计流量 有一份流量数据,结构是:时间戳.手机号.....上行流量.下行流量,需求是统计每个用户(手机号)的总上行.总下行以及总流量数值. Github地址 分析 由于希望的输出是一个 {手机号 上行流量 下行流量 总流量} 这样的结构,所以需要写个javabean把它们封装成一个类. private String phoneNum; private long upFlow; private lon…
一.shuffle机制 1.概述 (1)MapReduce 中, map 阶段处理的数据如何传递给 reduce 阶段,是 MapReduce 框架中最关键的一个流程,这个流程就叫 Shuffle:(2)Shuffle: 数据混洗 ——(核心机制:数据分区,排序,缓存):(3) 具体来说:就是将 maptask 输出的处理结果数据,分发给 reducetask,并在分发的过程 中,对数据按 key 进行了分区和排序:    2.主要流程 3.详细流程 (1)maptask 收集我们的 map()…
Shuffle过程主要分为Shuffle write和Shuffle read两个阶段,2.0版本之后hash shuffle被删除,只保留sort shuffle,下面结合代码分析: 1.ShuffleManager Spark在初始化SparkEnv的时候,会在create()方法里面初始化ShuffleManager // Let the user specify short names for shuffle managers val shortShuffleMgrNames = Map…