bzoj 3771: Triple 快速傅里叶变换 FFT】的更多相关文章

题目大意: 给出\(n\)个互不相同的物品,每个物品有价值\(x_i(x_i \leq 40000)\)如果可以从中取一个或两个或三个物品.问能够组合出来的所有价值和对应的方案数,全部输出.取值时,\((a,b)\)和\((b,a)\)算作一种 题解: 不要说什没有给\(n\)的范围什么的,题目表明了\(n \leq 40000\) 我们首先想到的是直接取 我们构造出只取一个物品时的母函数 \[A(x) = x + x^2 + x^3 + ...\] 然后我们取两个物品的时候的母函数就可以用乘积…
题意:n个物品,可以用1/2/3个不同的物品组成不同的价值,求每种价值有多少种方案(顺序不同算一种) [生成函数]: 构造这么一个多项式函数g(x),使得n次项系数为a[n]. 普通型生成函数用于解决多重集的组合问题 生成函数的x无实际意义 通常可以化为一个简单的式子 组合数的生成函数 A(x)=(1+x)^n  C(n,k)=a[k] 可以这么想,一次要么选择1要么选择x,选择x系数就会+1 生成函数系数为方案数,次数为价值 A(x) 选一个 B(x) A每项平方 选两个 C(x) A每项三次…
瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \),然后注意这里两个选一样的是不合法的,各出现了一次,所以减掉,然后这里是有顺序的,所以最后再除以2(就是(1,2)和(2,1)算两次): 对于选三个的,\( A(x)^3 \),然后去掉不合法的,设D(x)为每个斧头选两次的生成函数(也就是价格*2),然后A(x)*D(x)就表示前两个斧头重复选取的方…
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成函数. 设生成函数\(A(x)=\sum_{i=1}^{n} x^{w_i}\),指数为价值,系数为选的方案数.A表示每种物品取1个的方案数.同理,我们可以写出每种物品取2个和3个的生成函数. \(B(x)=\sum_{i=1}^{n} x^{2w_i}\) \(C(x)=\sum_{i=1}^{n…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
再探快速傅里叶变换(FFT)学习笔记(其一) 目录 再探快速傅里叶变换(FFT)学习笔记(其一) 写在前面 为什么写这篇博客 一些约定 前置知识 多项式卷积 多项式的系数表达式和点值表达式 单位根及其性质 DFT和IDFT DFT的过程 IDFT的过程 FFT FFT的数学证明及时间复杂度分析 FFT的递归实现 FFT的非递归实现 FFT的局限性 例题 写在前面 为什么写这篇博客 笔者去年暑假刚刚学习过FFT,NTT的一些基础应用.但当时对FFT和NTT的理解还不够深入.本博客参考2016年国家…
多项式乘法 #include <cstdio> #include <cmath> #include <algorithm> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <queue> #include <vector> #include <map> #include &l…
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一道叫做"神秘的常数 $\pi$"的题目而去学习过FFT, 但是基本就是照着板子打打完并不知道自己在写些什么鬼畜的东西OwO 不过...博主这几天突然照着算法导论自己看了一遍发现自己似乎突然意识到了什么OwO然后就打了一道板子题还1A了OwO再加上午考试差点AK以及日更频率即将不保于是就有了…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…