The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 980    Accepted Submission(s): 301 Problem Description Chinese people think of '8' as the lucky digit. Bob also likes digit '8…
Sum Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4704 Description   Sample Input 2   Sample Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The input file consists of multiple test cases. 题意…
Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2362    Accepted Submission(s): 937 Problem Description Define f(n) as the number of ways to perform n in format of the sum of some posi…
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围,即使是long long也无法存储. 因此需要利用 (a*b)%c = (a%c)*(b%c)%c,一直乘下去,即 (a^n)%c = ((a%c)^n)%c; 即每次都对结果取模一次 此外,此题直接使用朴素的O(n)算法会超时,因此需要优化时间复杂度: 一是利用分治法的思想,先算出t = a^(n/2),若…
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算法原理 . 看到这个算法之后,就知道这个题是求cd≡m(mod n),要求m,就要先求d,而d则是e的模反元素. 如果两个正整数a和n互质,那么一定可以找到整数b,使得 ab-1 被n整除,或者说ab被n除的余数是1.这时,b就叫做a的模反元素. 由模反元素可知,ed≡1(mod Phi[n])(p…
zhx's contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1867    Accepted Submission(s): 596 Problem Description As one of the most powerful brushes, zhx is required to give his juniors n p…
HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的合法串的个数. 首先不难通过枚举发现F(0) = 0, F(1) =2, F(3) = 6, F(4) = 9, F(5) = 15.然后引用网上如何求解递推公式的详细解释: 用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1): 如果最后一个…
题目链接:http://codeforces.com/contest/327/problem/C 首先先算出一个周期里面的值,保存在ans里面,就是平常的快速幂模m做法. 然后要计算一个公式,比如有k个部分,那么对于没一个位置i, 都有2^i + 2^(i+n) + ... + 2^(i+(k-1)*n) = 2^i(1 + 2^n + ... + 2^((k-1)*n)) = 2^i * (1-2^(n*k))/(1-2^n) 所以结果就是ans * (1-2^(n*k))/(1-2^n) %…
模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一定为1),如果遇到一个b[i]=0,则那么此时的结果就是b[i+1]时的结果的平方,若果b[i]=1,则结果是b[i+1]时的结果的平方再乘一个a 从b的角度理解,比如,二进制为 100 ,此时b=4,当下一位为0时,也就是 1000,即b=8,则此时的a^8=(a^4)^2 ,若果下一位为1,即二…
HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdio> using namespace std; long long pow_mod(long long a, long long p, long long mod) { if (p == 0) return 1; long long ans = pow_mod(a, p / 2, mod); ans =…