自动编码机(Autoencoder)属于非监督学习,不需要对训练样本进行标记.自动编码机(Autoencoder)由三层网络组成,其中输入层神经元数量与输出层神经元数量相等,中间层神经元数量少于输入层和输出层.在网络训练期间,对每个训练样本,经过网络会在输出层产生一个新的信号,网络学习的目的就是使输出信号与输入信号尽量相似.自动编码机(Autoencoder)训练结束之后,其可以由两部分组成,首先是输入层和中间层,我们可以用这个网络来对信号进行压缩:其次是中间层和输出层,我们可以将压缩的信号进行…
前面的不做过多解释了. 这里定义了两个占位符,各位也知道,在训练时,feed_dict会填充它们. 定义相关网络. 这里是权值矩阵和偏差. 这里是实例化了网络,定义了优化器和损失,和上一篇一样. 最后,写一个两重的for循环,进行训练. 然后简单地测试一下.…
加载数据集. 这里的keep_prob是dropout的一个参数.dropout是一种随机置零的策略,用来防止模型过拟合. 这里定义两层,上面是卷积层,下面是池化层. 搭建了一层卷积.一层池化.一层卷积.一层池化.之后将输出展平,输入到全连接层里,进行输出,激活函数选用了relu函数. 这是上面神经网络用到的参数. 之后我们构建模型,pred是整个网络的输出. cost设置为交叉熵 \[l(\varphi)=ylog(1-\varphi)+(1-y)log(1-\varphi)\] 优化器设置为…
第一步仍然是导入库和数据集. ''' To classify images using a reccurent neural network, we consider every image row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample. ''' 这里我们设定了各种参数,此时的n_ste…
import库,加载mnist数据集. 设置学习率,迭代次数,batch并行计算数量,以及log显示. 这里设置了占位符,输入是batch * 784的矩阵,由于是并行计算,所以None实际上代表并行数.输出是10类,因为mnist数据集是手写数字0-9,所以分成10类是很正常的. W和b是变量. 第一行代码建立了一个softmax模型,意思是,将10类最后的输出结果再通过softmax函数换算一下,softmax函数如下: ,其实就是做了一次转换,让各个输出变成了概率,且概率之和等于1. 也要…
最近邻模型,更为常见的是k-最近邻模型,是一种常见的机器学习模型,原理如下: KNN算法的前提是存在一个样本的数据集,每一个样本都有自己的标签,表明自己的类型.现在有一个新的未知的数据,需要判断它的类型.那么通过计算新未知数据与已有的数据集中每一个样本的距离,然后按照从近到远排序.取前K个最近距离的样本,来判断新数据的类型. import相关库,记载数据(当然正常情况下不是这么加载的),指定了5000个样本用来训练,200个样本用来测试. 然后下面分别定义了训练和测试的计算图的输入. 算法很简单…
首先呢,进行import,对于日常写代码来说,第二行经常写成:import numpy as np,这样会更加简洁.第三行import用于绘图. 定义了学习率.迭代数epoch,以及展示的学习步骤,三个参数. 同时给出了训练用的原始数据,n_samples用来记录一共有多少数据. 这里指明了计算图的输入,W和b是模型的权重矩阵和偏差,目的是要学习一个 \[y=\mathbf{W}x+\mathbf{b}\] 函数. 这里就定义了上述函数. 这里定义了损失函数cost,使用了平方损失. optim…
众所周知我暂时弃掉了那个音乐生成的坑,原因是我的代码写得还不够纯熟…… 现在我找到了一个项目,用来从代码基础开始补起,同时写下学习笔记. 项目地址:https://github.com/aymericdamien/TensorFlow-Examples 首先最基础的第0章我们就跳过了,这个不涉及TensorFlow本身. 然后使用jupyter打开这开ipynb文件: 我们开始. ======================================== example里的是完整代码,no…
TensorFlow入门,基本介绍,基本概念,计算图,pip安装,helloworld示例,实现简单的神经网络…
    TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Day 1 里,先了解了一下 NLP 和 DP 的主要概念,对它们有了一个大体的印象,用向量去表示研究对象,用神经网络去学习,用 TensorFlow 去训练模型,基本的模型和算法包括 word2vec,softmax,RNN,LSTM,GRU,CNN,大型数据的 seq2seq,还有未来比较火热的研究…
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlow实战这本书中给出了更好的实现,他将程序分为三个模块,分别是前向传播过程模块,训练模块和验证检测模块.并且在这个版本中添加了模型持久化功能,我们可以将模型保存下来,方便之后的模型检验,并且我们可以一边训练新的模型,一边来检验模型,代码更加的灵活高效. 前向传播模块 首先将前向传播过程抽象出来,作为一个可以作为…
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlow实战这本书中给出了更好的实现,他将程序分为三个模块,分别是前向传播过程模块,训练模块和验证检测模块.并且在这个版本中添加了模型持久化功能,我们可以将模型保存下来,方便之后的模型检验,并且我们可以一边训练新的模型,一边来检验模型,代码更加的灵活高效. 前向传播模块 首先将前向传播过程抽象出来,作为一个可以作为…
http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236eb1cb4f7374387a235&scene=0#rd [技术博客]Spark性能优化指南——高级篇 2016-05-13 李雪蕤 美团技术团队 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调…
FaceRank,最有趣的 TensorFlow 入门实战项目 TensorFlow 从观望到入门! https://github.com/fendouai/FaceRank 最有趣? 机器学习是不是很无聊,用来用去都是识别字体.能不能帮我找到颜值高的妹子,顺便提高一下姿势水平. FaceRank 基于 TensorFlow CNN 模型,提供了一些图片处理的工具集,后续还会提供训练好的模型.给 FaceRank 一个妹子,他给你个分数. 从此以后筛选简历,先把头像颜值低的去掉:自动寻找女主颜值…
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量表示(Vector Representations of Words) . 循环神经网络(RNN).LSTM(Long-Short Term Memory, LSTM) . 用深度学习网络搭建一个聊天机器人 0. 个人理解 在学习的最开始,我在这里写一个个人对deep leanring和神经网络的粗…
本文转载自:https://tech.meituan.com/spark-tuning-pro.html 美团技术点评团队) Spark性能优化指南——高级篇 李雪蕤 ·2016-05-12 14:47 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题. 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spa…
Java工程师学习指南 初级篇 最近有很多小伙伴来问我,Java小白如何入门,如何安排学习路线,每一步应该怎么走比较好.原本我以为之前的几篇文章已经可以解决大家的问题了,其实不然,因为我之前写的文章都是站在Java后端的全局上进行思考和总结的,忽略了很多小白们的感受,而很多朋友都需要更加基础,更加详细的学习路线. 所以,今天我们重新开一个新的专题,分别按照四篇文章讲述Java的学习路线(分别是入门篇,初级篇,中级篇,高级篇),笔者也打算趁此机会,回忆一下自己的Java学习历程.今天我们要讲的是,…
http://blog.csdn.net/Jerr__y/article/details/70471066 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-04-19 前言 本例子主要介绍如何使用 TensorFlow 来一步一步构建双端 LSTM 网络(听名字就感觉好腻害的样子),并完成序列标注的问题.先声明一下,本文中采用的方法主要参考了[中文分词系列] 4. 基于双向LSTM的seq2seq字标注这篇文章.该文章用…
TensorFlow入门教程之0: BigPicture&极速入门 TensorFlow入门教程之1: 基本概念以及理解 TensorFlow入门教程之2: 安装和使用 TensorFlow入门教程之3: CNN卷积神经网络的基本定义理解 TensorFlow入门教程之4: 实现一个自创的CNN卷积神经网络 TensorFlow入门教程之5: TensorBoard面板可视化管理 TensorFlow入门教程之6: AlphaGo 的策略网络(CNN)简单的实现 TensorFlow入门教程之7…
引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tensorflow编程常用的一些方法. 正文 神经网络的内容 一般,一个神经网络程序包含以下几部分内容. 1.数据表达和特征提取.对于一个非深度学习神经网络,主要影响其模型准确度的因素就是数据表达和特征提取.同样的一组数据,在欧式空间和非欧空间,就会有着不同的分布.有时候换一种思考问题的思路就会使得问题变…
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ------------------------------------ TensorFlow入门笔记之基础架构 1 构建简单神经网络:一维线性预测 #导入相关库 import tensorflow as tf import numpy as np #用随机数生成x x_data = np.random.rand(100).astype(np.float32) #生…
TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 Dropout 输出层 训练和评估模型 多层卷积网络 多层卷积网络的基本理论 卷积神经网络(Convolutional Neural Network,CNN) 是一种前馈神经网络, 它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.它包括卷积层(alternating…
利用 TensorFlow 入门 Word2Vec 原创 2017-10-14 chen_h coderpai 博客地址:http://www.jianshu.com/p/4e16ae0aad25 或者点击阅读原文 我认为学习算法的最好方法就是尝试去实现它,因此这个教程我们就来学习如何利用 TensorFlow 来实现词嵌入. 这篇文章我们不会去过多的介绍一些词向量的内容,所以很多 king - man - woman - queue 的例子会被省去,直接进入编码实践过程. 我们如何设计这些词嵌…
原文:Getting Started with TensorFlow 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 TensorFlow 入门 零.前言 一.TensorFlow 基本概念 二.TensorFlow 数学运算 三.机器学习入门 四.神经网络简介 五.深度学习 六.TensorFlow GPU 编…
openresty 前端开发入门五之Mysql篇 这章主要演示怎么通过lua连接mysql,并根据用户输入的name从mysql获取数据,并返回给用户 操作mysql主要用到了lua-resty-mysql库,代码可以在github上找得到 而且上面也有实例代码 由于官网给出的例子比较基本,代码也比较多,所以我这里主要介绍一些怎么封装一下,简化我们调用的代码 lua/mysql.lua local mysql = require "resty.mysql" local config =…
http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 2016-05-18 优才网 前言 在大数据计算领域,Spar…
Systemd 入门教程:实战篇 上一篇文章,介绍了 Systemd 的主要命令,这篇文章主要介绍如何使用 Systemd 来管理我们的服务,以及各项的含义: 一.开机启动 对于那些支持 Systemd 的软件,安装的时候,会自动在/usr/lib/systemd/system目录添加一个配置文件,如果你想让该软件开机启动,就执行下面的命令(以httpd.service为例). $ sudo systemctl enable httpd 上面的命令相当于在/etc/systemd/system目…
我们讨论了去噪自动编码机(dA),并讨论了Theano框架实现的细节.在本节中,我们将讨论去噪自动编码机(dA)的主要应用,即组成堆叠自动编码机(SdA),我们将以MNIST手写字母识别为例,用堆叠自动编码机(SdA)来解决这一问题. 堆叠自动编码机(SdA)是由一系列去噪自动编码机堆叠而成,每个去噪自动编码机的中间层(即编码层)作为下一层的输入层,这样一层一层堆叠起来,构成一个深层网络,这些网络组成堆叠去噪自动编码机(SdA)的表示部分.这部分通过无监督学习,逐层进行培训,每一层均可以还原加入…
tensorflow入门(1) 关于 TensorFlow TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等.TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程…
Java工程师学习指南 完结篇 先声明一点,文章里面不会详细到每一步怎么操作,只会提供大致的思路和方向,给大家以启发,如果真的要一步一步指导操作的话,那至少需要一本书的厚度啦. 因为笔者还只是一名在校生,所以写的内容主要还是针对Java初学者或者接触Java后端不久的朋友,不适用于已经工作多年的Java大佬们.所以本文中的方法不一定适合所有人,如有错误还请谅解. 本期的内容是系列文章的最后一部分内容了.这个系列可能还有很多东西没有说清楚,也有很多内容被忽略了.但是这些内容也确实是笔者结合自己经验…