[题解]Cats Transport (斜率优化+单调队列) # When Who Problem Lang Verdict Time Memory 55331572 Jun/09/2019 19:18UTC+8 Winlere D - Cats Transport GNU C++11 Accepted 405 ms 84200 KB 思考的过程很艰难,想清楚之后就不难做了.记录一下思路过程. 时间 事件 14:00 开始审题 14:15 手玩样例 14:30 Observe \(\times…
题面:CF311B Cats Transport 题解: 首先我们观察到山与距离其实是没有什么用的,因为对于任意一只猫,我们都可以直接算出如果有一个人要恰好接走它,需要在哪一时刻出发,我们设第i只猫对应的这个时刻为$t_{i}$. 注意这个$t_{i}$是我自己新定义的,跟题目中的没有关系,下面所写的t都是我现在所定义的t,而跟原题面中的t没有任何关系. 然后我们对t数组排个序,于是题意转化为了有m只猫,每只猫有一个权值$t_{i}$,如果出发时间大于等于$t_{i}$,则可以接到第i只猫.设出…
题目链接 斜率优化 不说了 网上很多 这的比较详细->Click Here or Here //1700kb 60ms #include<cstdio> #include<cctype> //#define gc() getchar() #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++) typedef long long LL; const int N=5e…
Cats Transport 出发时间居然能是负的,我服了... 卡了我十几次, 我一直以为斜率优化写搓了. 我们能得出dp方程式 dp[ i ][ j ] = min(dp[ k ][ j - 1 ] + hs[ i ] * (cnt[ i ] - cnt[ j ]) - sum[ i ] + sum[ j ]) k < i 这个东西显然能斜率优化, 直接搞. 其实不用离散化直接dp更好写. #include<bits/stdc++.h> #define LL long long #d…
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有 的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具 经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加 入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck)…
luogu翻译 一些山距离起点有距离且不同,m只猫要到不同的山上去玩ti时间,有p个铲屎官人要去把所有猫接走,步行速度为1单位每秒,从1走到N座山不停下,必须在猫玩完后才可以把他带走.可以提前出发.问所有猫最少等待时间之和. 这题一开始有个模糊想法就是$f[i][j]$表示前i个人接j只猫,但是猫是乱序的,必须找一种方法顺序的dp.想到排序.但是排时间抑或是距离都不对,要考虑优先接哪个.然后瞎想到每只猫可以让人在$T_i-dis_i$时刻从起点出发正好接到不用等,那接一堆猫等待时间取决于要求出发…
题目传送门 题意:现在有n座山峰,现在 i-1 与 i 座山峰有 di长的路,现在有m个宠物, 分别在hi座山峰,第ti秒之后可以被带走,现在有p个人,每个人会从1号山峰走到n号山峰,速度1m/s.现在你可以安排好这p个人的出发时间,问所有宠物的等待时间是多少. 题解: 斜率优化DP 我们知道一个人出发之后,该宠物的等待时间就已经决定了. 所以我们可以把每个宠物的0等待时间算出来, 即 A[i] = t[i] - d[h[i]], d为1-h[i]的距离 然后把A[i]排序之后,就可以得到一个出…
AcWing Description Sol 设f[i][j]表示前i个饲养员接走前j只猫咪的最小等待时间. 要接到j猫咪,饲养员的最早出发时间是可求的,设为d: $ d[j]=Tj-\sum_{k=1}^{Hi}Dk$ 然后把d从小到大排序并且求出前缀和s.注意到,一个饲养员带走的猫咪一定是按d排序后连续的一段.假设一个饲养员最后一个接走的猫是第k只,他后面一个饲养员是在d[k]时间出发的,那么,他能接走[k+1,j]的所有猫咪. $f[i][j]=min{f[i-1][k]+dj*(j-k)…
题意: 给定一个01序列,选一个长度至少为L 的连续子序列使其平均值最大;输出这个子序列的起点和终点;如果有多个答案,输出长度最小的,还有多个就输出第一个编号最小的; 思路: 用sum[i]表示[1,i]的和;题目的平均值就可以变成(sum[i]-sum[j-1])/(i-(j-1)); 问题也变成求横坐标的距离至少为L的两点连线斜率最大的那两点的横坐标是多少? 对于每个点作为横坐标较大的点,判断横坐标距离最少为L的点,指针r维护这些点是一个下凸线,指针l维护与当前点斜率最大点; 复杂度是O(n…
题解-Cats Transport Cats Transport 有 \(n\) 个山丘,\(m\) 只猫子,\(p\) 只铲屎官.第 \(i-1\) 个山丘到第 \(i\) 个山丘的距离是 \(d_i\).第 \(i\) 只猫子在山丘 \(h_i\) 玩 \(t_i\) 时间.每个铲屎官可以选择出发时间,然后从 \(1\) 号山丘一直不停地每秒一个单位走到 \(n\) 号山丘,领走路上已经玩完的猫.求每只猫都被领走的最小猫子等待时间和. 数据范围:\(2\le n\le 10^5\),\(1\…