首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
spark中产生shuffle的算子
】的更多相关文章
spark中产生shuffle的算子
Spark中产生shuffle的算子 作用 算子名 能否替换,由谁替换 去重 distinct() 不能 聚合 reduceByKey() groupByKey groupBy() groupByKey() reduceByKey aggregateByKey() combineByKey() 排序 sortByKey() sortBy() 重分区 coalesce() repartition() 集合或者表操作 Intersection() Substract() SubstractByKey…
Spark中的各种action算子操作(java版)
在我看来,Spark编程中的action算子的作用就像一个触发器,用来触发之前的transformation算子.transformation操作具有懒加载的特性,你定义完操作之后并不会立即加载,只有当某个action的算子执行之后,前面所有的transformation算子才会全部执行.常用的action算子如下代码所列:(java版) package cn.spark.study.core; import java.util.Arrays; import java.util.List; im…
Spark会产生shuffle的算子
去重 def distinct() def distinct(numPartitions: Int) 聚合 def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] def groupBy[K](f: T => K, p: Partitioner):RDD[(K,…
spark中map和mapPartitions算子的区别
区别: 1.map是对rdd中每一个元素进行操作 2.mapPartitions是对rdd中每个partition的迭代器进行操作 mapPartitions优点: 1.若是普通map,比如一个partition中有一万条数据,那么function要执行一万次,而使用mapPartions,一个task只执行一次function,function一次接收所有数据,只执行一次,性能高 2.若在map中需要频繁创建额外对象(如将rdd的数据通过jdbc写入数据库,map需要为每条数据创建一个链接,m…
[Spark性能调优] 第三章 : Spark 2.1.0 中 Sort-Based Shuffle 产生的内幕
本課主題 Sorted-Based Shuffle 的诞生和介绍 Shuffle 中六大令人费解的问题 Sorted-Based Shuffle 的排序和源码鉴赏 Shuffle 在运行时的内存管理 引言 在历史的发展中,为什么 Spark 最终还是选择放弃了 HashShuffle 而使用了 Sorted-Based Shuffle,而且作为后起之秀的 Tungsten-based Shuffle 它到底在什么样的背景下产生的.Tungsten-Sort Shuffle 已经并入了 Sorte…
Spark 2.x 中 Sort-Based Shuffle 产生的内幕
本课主题 Sorted-Based Shuffle 的诞生和介绍 Shuffle 中六大令人费解的问题 Sorted-Based Shuffle 的排序和源码鉴赏 Shuffle 在运行时的内存管理 引言 在历史的发展中,为什么 Spark 最终还是选择放弃了 HashShuffle 而使用了 Sorted-Based Shuffle,而且作为后起之秀的 Tungsten-based Shuffle 它到底在什么样的背景下产生的.Tungsten-Sort Shuffle 已经并入了 Sorte…
Spark中shuffle的触发和调度
Spark中的shuffle是在干嘛? Shuffle在Spark中即是把父RDD中的KV对按照Key重新分区,从而得到一个新的RDD.也就是说原本同属于父RDD同一个分区的数据需要进入到子RDD的不同的分区. 但这只是shuffle的过程,却不是shuffle的原因.为何需要shuffle呢? Shuffle和Stage 在分布式计算框架中,比如map-reduce,数据本地化是一个很重要的考虑,即计算需要被分发到数据所在的位置,从而减少数据的移动,提高运行效率. Map-Reduce的输入数…
spark性能调优(二) 彻底解密spark的Hash Shuffle
装载:http://www.cnblogs.com/jcchoiling/p/6431969.html 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-Based Shuffle,那为什么要讲 HashShuffle 呢,因为有分布式就一定会有 Shuffle,而且 HashShuffle 是 Spark以前的版本,亦即是 Sort-Based Shuffle 的前身,因为有 HashShuffle 的不足,才会有后续的 Sorted-Based S…
spark中数据倾斜解决方案
数据倾斜导致的致命后果: 1 数据倾斜直接会导致一种情况:OOM. 2 运行速度慢,特别慢,非常慢,极端的慢,不可接受的慢. 搞定数据倾斜需要: 1.搞定shuffle 2.搞定业务场景 3 搞定 cpu core的使用情况 4 搞定OOM的根本原因等. 数据倾斜的解决方案: 解决方案一:使用Hive ETL预处理数据 方案适用场景:导致数据倾斜的是Hive表.如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spar…
spark教程(13)-shuffle介绍
shuffle 简介 shuffle 描述了数据从 map task 输出到 reduce task 输入的过程,shuffle 是连接 map 和 reduce 的桥梁: shuffle 性能的高低直接影响了整个程序的性能和吞吐量,因为在 分布式 情况下,reduce task 需要跨节点去拉取其他节点上 map task 的结果,这需要消耗网络资源.内存 IO 和磁盘 IO: shuffle 可分为两部分:map 阶段的数据准备和 reduce 阶段的数据拷贝处理,一般 map 端的 shu…