这篇文章主要简单的记录所谓的“线性相关性”. 线性相关性的对象是向量R^n,对于向量方程,如果说x1v1 + x2v2 + …+xmvm = 0(其中xi是常数,vi是向量)有且仅有一个平凡解,那么我们称m个向量组成的集合{v1,v2,v3…vm}是一个线性无关集,反之,则称向量集合{v1,v2,v3,…vm}是线性相关的. 这个定义似乎显得有些唐突,我们反过来理解所谓的“线性相关”,即在一组非零解的情况下,我们将某个一个系数xi不为0的向量移到等式的另一侧,从这种形式来看,我们得到了向量vi关…
向量: 向量的基本运算:向量的运算最基本的一件事情,就是基于它n个分量上进行,即对于两个分量的向量a = <a1,a2>,b = <b1,b2>,有a + b = <a1+b1,a2+b2>.聪明的读者可能已经想到了,这其实是与我们在高中物理的力学中所谓的“正交分解”是相互呼应的,而其实也是基于此,我们能够得到我们熟悉的所谓“平行四边形法则”.“三角形法则”. 更全面的向量的代数性质,下表给出. 向量方程: 我们进行进一步的转化. 可以看到,解向量方程的过程本质上回到了…
最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方程组Ax=b,可能是无解的,但是我们就是迫切的需要一个解,满足这个解是方程的最近似解. 下面我们综合之前给出了一系列概念.定理,来解决这个问题. 首先我们需要给出最近似解的定义: 我们需要站在新的角度来解读线性方程组Ax=b,这样能够帮助我们更好的解决问题. 上文已经给出最小二乘问题最一般化的解法,…
这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: 先举个最简单的例子,在平面中,两个二维向量的点乘如果为0,那么我们可判定两个向量互相垂直,那么实际上这两个向量就是R^2向量空间上的一组正交向量. 下面推广到R^n向量空间上,给出正交性的定义: 正交集: 给定向量集合S,当S中任意两个元素都相互正交,我们称S是一个正交集. 基的一个概念其实表征一个…
计算线性方程组唯一解的克拉默法则:…
矩阵的逆: 逆矩阵的定义: 类比于我们在研究实数的时候回去讨论一个数的倒数,对应的,在矩阵运算中,当AB = I的时候,A,B互称为逆矩阵,这里的I类似实数中的1,表示单位矩阵,即对角线是1其余位置是0的n x n的矩阵. 逆矩阵的唯一性: 逆矩阵是像实数的倒数一样唯一存在的么?我们不妨简单地证明一下.假设A的两个逆矩阵是B,C.根据定义我们有AB=I,AC=I,结合基本的矩阵运算法则,容易看到B=C=IA^-1,由此能够看到逆矩阵是唯一存在的. 或者我们可以从代数系统的角度去审视矩阵及其运算,…
之前我们曾经提及,完成了线性方程组-向量方程-矩阵方程的等价转化之后,我们对于现实问题中的线性方程组,只需将其转移到矩阵(向量)方程,然后利用矩阵代数中的各种方法和性质进行计算或者化简即可,而下面我们就去着力探讨矩阵代数. 需要在一开始就点到的是,无论是矩阵的加法还是乘法,我们都强调有定义,这个再具体的论述中不再强调. 和与标量乘法: 这一系列性质很直观,证明略去. 矩阵乘法: 因此我们就可以很自然的引出下面的结论:…
两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. 由于矩阵A和向量x的乘积的性质与线性变换的定义有着密切的联系,我们能够进一步的探索矩阵A在线性变换中扮演着怎样的角色. 有了线性变换和标准矩阵的概念,我们就有了强有力的工具用来表示实际问题中一系列诸如拉伸.伸缩的线性变换了.…
在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: 两个定理均在阐述如何构成子空间,其证明也只需要简单的证明构造出的子空间满足子空间H需要满足的三个条件即可.…
构造R^n子空间W一组正交基的算法:格拉姆-施密特方法.…