Spark 要点总结及优化】的更多相关文章

Spark SQL是Spark最新和技术最为复杂的组件之一.它支持SQL查询和新的DataFrame API.Spark SQL的核心是Catalyst优化器,它以一种新颖的方式利用高级编程语言特性(例如Scala的模式匹配和quasiquotes)来构建可扩展查询优化器. 我们最近发布了一篇关于Spark SQL的论文,该论文将出现在SIGMOD 2015(由Davies Liu,Joseph K. Bradley,Xiangrui Meng,Tomer Kaftan,Michael J. F…
本节内容 ------------------ · Spark为什么要分区 · Spark分区原则及方法 · Spark分区案例 · 参考资料 ------------------ 一.Spark为什么要分区    分区概念:分区是RDD内部并行计算的一个计算单元,RDD的数据集在逻辑上被划分为多个分片,每一个分片称为分区,分区的格式决定了并行计算的粒度,而每个分区的数值计算都是在一个任务中进行的,因此任务的个数,也是由RDD(准确来说是作业最后一个RDD)的分区数决定. 为什么要分区,这个借用…
服务端使用训练出来的模型,spark模型计算第一步是实现spark模型加载. 线上服务对用户体验影响极大,故需要对模型使用进行优化. 1.多线程并发进行计算,线上两个服务.优化cpu 2.在扩召回集,io是性能瓶颈,特征服务内进行计算.优化io 3.在扩大召回集,多个计算节点,请求节点只发送请求,多个节点计算,同时并发计算.优化io和cpu…
Spark中定义的损失函数及梯度,在看源代码之前,先回想一下机器学习中定义了哪些损失函数,毕竟梯度求解是为优化求解损失函数服务的. 监督学习问题是在如果空间F中选取模型f作为决策函数.对于给定的输入X,由f(X)给出对应的输出Y,这个输出的预測值f(X)与真实值Y可能一致也可能不一致,用一个损失函数(lossfunction)或代价函数(cost function)来度量预測错误的程度.损失函数是f(X)和Y的非负实值函数,记作L(Y, f(X)). 统计学习中经常使用的损失函数有下面几种: (…
优化思路 内存优化 内存优化大概分为三个方向 1.所有对象的总内存(包括数据和java对象) 2.访问这些对象的开销 3.垃圾回收的开销 其中Java的原生对象往往都能被很快的访问,但是会多占据2-5倍或更多的内存,有下面4点原因 ·每个单独的java对象都有一个对象头(16字节),其中包括指向对象的指针(栈->堆),如果该对象只有几个属性,那么对象头可能比实际数据占用的空间都大(严重浪费资源) ·java每个string都包含了40字节的额外开销(因为底层其实是存储在数组,需要记录数组的指针,…
发表于:<程序员>杂志2016年2月刊.链接:http://geek.csdn.net/news/detail/54500 作者:徐鑫,董西成 在流式计算领域,Spark Streaming和Storm时下应用最广泛的两个计算引擎.其中,Spark Streaming是Spark生态系统中的重要组成部分,在实现上复用Spark计算引擎.如图1所示,Spark Streaming支持的数据源有很多,如Kafka.Flume.TCP等.Spark Streaming的内部数据表示形式为DStrea…
http://www.cnblogs.com/LBSer/p/4129481.html 一.问题 使用spark join两张表(5000w*500w)总是出错,报的异常显示是在shuffle阶段. 14/11/27 12:05:49 ERROR storage.DiskBlockObjectWriter: Uncaught exception while reverting partial writes to file /hadoop/application_1415632483774_448…
一.工作原理剖析 1.图解 二.性能优化 1.设置Shuffle过程中的并行度:spark.sql.shuffle.partitions(SQLContext.setConf()) 2.在Hive数据仓库建设过程中,合理设置数据类型,比如能设置为INT的,就不要设置为BIGINT.减少数据类型导致的不必要的内存开销. 3.编写SQL时,尽量给出明确的列名,比如select name from students.不要写select *的方式. 4.并行处理查询结果:对于Spark SQL查询的结果…
转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行…
http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 2016-05-18 优才网 前言 在大数据计算领域,Spar…