kNN-预测】的更多相关文章

示例数据: 0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30 396.90 4.98 24.00 0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80 396.90 9.14 21.60 0.02729 0.00 7.070 0 0.4690 7.1850 61.10 4.9671 2 242.0 17.80 392.83 4.03 34.70 0.0…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
下午于屋中闲居,于是翻开<机器学习实战>一书看了看“k-邻近算法”的内容,并学习了一位很厉害的博主Jack Cui的代码,自己照着码了一遍.在此感谢博主Jack Cui的知识分享. 一.k-邻近算法简介 k-邻近算法作为最简单的机器学习算法之一,其原理也浅显易懂,即:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 事实上,k-邻近算法并没有进行数据的训练,而是直接将未知数据与已知数据进行比较的.因此,k-邻近算法不具有显式的学…
(2017-04-10 银河统计) KNN算法即K Nearest Neighbor算法.这个算法是机器学习里面一个比较经典的.相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法是用来做归类的,也就是说,一个样本空间里的样本已经分成很几个类型,然后,给定一个待分类的数据,通过计算接近自己最近的K个样本来判断这个待分类数据属于哪个分类.你可以简单的理解为由那离自己最近的K个点来投票决定待分类数据归为哪一类. 一个比较经典的KNN图如下: 从上图中我们可以看到,图中的有两个类型…
散点图和KNN预测 一丶案例引入 # 城市气候与海洋的关系研究 # 导包 import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt %matplotlib inline # 使用画图模块时,jupyter工具需要声明 from pylab import mpl # mpl 提供画图的包 mpl.rcParams['font.sans-seri…
为AI做注解: AI已经出第三版,大的框架没有改变,DNN也没有引入AI这本书.第四版网络版应流出,不知道最终定版如何! 强化学习的方法有大幅度更新,但从策略系统更新范畴看来,没有什么实质的改变,只是规模的变更. 在一个算法工程师 和一个硬件工程师之间,把 不鲁棒 与不稳定 两个 形容词 联系起来,这就是转换思维的必要性.科普的本质是 用一种语法 来解释另一种语法,并保持语义不变. 一.基本原理 和方法论 贝叶斯理论-反向链(理论极限) 因果关系-前向图.前向链(................…
在机器学习模型中,需要人工选择的参数称为超参数.比如随机森林中决策树的个数,人工神经网络模型中隐藏层层数和每层的节点个数,正则项中常数大小等等,他们都需要事先指定.超参数选择不恰当,就会出现欠拟合或者过拟合的问题.而在选择超参数的时候,有两个途径,一个是凭经验微调,另一个就是选择不同大小的参数,带入模型中,挑选表现最好的参数. 微调的一种方法是手工调制超参数,直到找到一个好的超参数组合,这么做的话会非常冗长,你也可能没有时间探索多种组合,所以可以使用Scikit-Learn的GridSearch…
一.客户画像 客户画像应用:精准营销(精准预测.个性化推荐.联合营销):风险管控(高风险用户识别.异常用户识别.高可疑交易识别):运营优化(快速决策.产品组合优化.舆情分析.服务升级):业务创新(批量获客.跨界融合.整合资源与产业升级) 用用户画像的方法圈定我们的用户.行为偏好对客户的特质影响最大. 产品特质要从产品的使用人群去验证.当决策点与客户标签匹配的时候就针对性的营销.渠道的场效应对于行为也有影响,所以需要三方面信息,需要标签.产品知识库.渠道知识库. 用户画像是为了满足对用户需求的探查…
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);}.main-container {…
应用kNN算法预测豆瓣电影用户的性别 摘要 本文认为不同性别的人偏好的电影类型会有所不同,因此进行了此实验.利用较为活跃的274位豆瓣用户最近观看的100部电影,对其类型进行统计,以得到的37种电影类型作为属性特征,以用户性别作为标签构建样本集.使用kNN算法构建豆瓣电影用户性别分类器,使用样本中的90%作为训练样本,10%作为测试样本,准确率可以达到81.48%. 实验数据 本次实验所用数据为豆瓣用户标记的看过的电影,选取了274位豆瓣用户最近看过的100部电影.对每个用户的电影类型进行统计.…