Prufer序列 学习笔记】的更多相关文章

prufer序列是一个定义在无根树上的东西. 构造方法是:每次选一个编号最小的叶子结点,把他的父亲的编号加入到序列的最后.然后删掉这个叶节点.直到最后只剩下两个节点,此时得到的序列就是prufer序列. 这个构造可以用优先队列做到 $O(n\log n)$. 至于如何用prufer序列反推出树,我还有点没看懂怎么 $O(n\log n)$,以后看懂了再来填坑吧. prufer序列的一些性质: 一棵 $n$ 个点的无根树prufer序列长度为 $n-2$. 无根树和prufer序列一一对应,一个无…
prufer 序列是一种无根树的序列,对于一个 \(n\) 个点的树,其 prufer 序列的长度为 \(n-2\). prufer 序列和原树之间都可以唯一地相互转化. 构造 构造 prufer 序列分为如下的步骤: 找到一个编号最小的度数为 \(1\) 的点: 将与这个点相邻的点的编号加入 prufer 序列的后面: 删除这个点: 重复上述步骤,知道原树只剩下 \(2\) 个点,这两个点之间应该有一条边. 还原 令集合 \(V = \{1, 2, \cdots, n\}\). 取出 pruf…
prufer 编码 对于一个无根树,他的 prufer 编码是这样确定的: 每次找到编号最小的一个叶子节点,也就是度数为\(1\)的节点,把和它相连的点,加入 prufer 编码序列的末尾,然后把这个点从树中删掉 如果当前树只有两个节点了,就停止 那么,通过给定的无根树求 prufer 编码就很简单了 比如下面这个无根树,它的 prufer 编码就是\(\texttt{125214}\) 这个 prufer 编码有一些很显然的性质 首先长度肯定是\(n-2\),但每个元素可能相同,然后对于每个无…
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. prufer数列,可以用来解一些关于无根树计数的问题. prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码. (…
前言 PKUWC和NOIWC都考察了prufer序列,结果统统爆零 prufer序列就是有标号生成树对序列的映射 prufer序列生成 每次选择编号最小的叶子删掉,把叶子的父亲加入prufer序列,直到剩下2个点 set维护叶子,nlogn prufer序列还原 用set维护没有在剩余prufer序列中的点,不断取出prufer序列首项A,和set中最小的编号连边.然后删除两个点.(如果A在剩下的prufer序列不存在了,就加入set) 摘自百度百科: 性质 来自:https://www.cnb…
本系列为一个博客的学习笔记,一部分为我原创. 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 1. print 可以打印 有时需要 (),有的版本不需要. 惯例hello world:   print("hello world") 2. 脚本保存为 .py,怎么执行? 1) 可以在linux环境下输入: $python sample.py 2)在IDE环境下 在脚本编写界面,点击run module执行脚本 3)ma…
python学习笔记(一)元组,序列,字典…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
prufer序列 度娘的定义 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2. 对于一棵确定的无根树,对应着唯一确定的prufer序列 构造方法 无根树转化为prufer序列 找到编号最小的度数为\(1\)的点 删除该节点并在序列中添加与该节点相连的节点的编号 重复\(1,2\)操作,直到整棵树只剩下两个节点 如下图的prufer序列为\(3,5,1,3\) prufer序列转化为无根树…
\(Prufer\)序列 在一棵\(n\)个点带标号无根树里,我们定义这棵树的\(Prufer\)序列为执行以下操作后得到的序列 1.若当前树中只剩下两个节点,退出,否则执行\(2\) 2.令\(u\)为树中编号最小的叶子节点,记\(v\)为唯一与\(u\)有边相连的节点,把\(u\)删去,并将\(v\)加入到序列的末尾,重复\(1\) 显然,得到的\(Prufer\)序列是一个长度为\(n-2\)的序列 易证每一棵\(n\)个节点的有标号无根树都唯一对应一个长度为\(n-2\)的\(Prufe…