TensorFlow搭建模型方式总结】的更多相关文章

引言 TensorFlow提供了多种API,使得入门者和专家可以根据自己的需求选择不同的API搭建模型. 基于Keras Sequential API搭建模型 Sequential适用于线性堆叠的方式搭建模型,即每层只有一个输入和输出. import tensorflow as tf # 导入手写数字数据集 mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() # 数据标准…
我一直觉得TensorFlow的深度神经网络代码非常困难且繁琐,对TensorFlow搭建模型也十分困惑,所以我近期阅读了大量的神经网络代码,终于找到了搭建神经网络的规律,各位要是觉得我的文章对你有帮助不妨点一个关注. 我个人把深度学习分为以下步骤:数据处理 --> 模型搭建 --> 构建损失 --> 模型训练 --> 模型评估 我先把代码放出来,然后一点一点来讲 # Author:凌逆战 # -*- encoding:utf-8 -*- # 修改时间:2020年5月31日 imp…
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相…
在用PMML实现机器学习模型的跨平台上线中,我们讨论了使用PMML文件来实现跨平台模型上线的方法,这个方法当然也适用于tensorflow生成的模型,但是由于tensorflow模型往往较大,使用无法优化的PMML文件大多数时候很笨拙,因此本文我们专门讨论下tensorflow机器学习模型的跨平台上线的方法. 1. tensorflow模型的跨平台上线的备选方案 tensorflow模型的跨平台上线的备选方案一般有三种:即PMML方式,tensorflow serving方式,以及跨语言API方…
http://www.jianshu.com/p/e112012a4b2d 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相连接并进行计算,在外界信息的基础上,改变内部的结构,常用来对输入和输出间复杂的关系进行建模. 神经网络由大量的节点和之间的联系构成,负责传递信息和加工信息,神经元也…
3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道理嘛.其实这些个框架一通百通,就是语法不一样了些.从tensorflow开始吧. 关于tf的安装详见另一篇博文,此处tensorflow的学习基本来自Udacity中google的深度学习课程. 1:tensorflow的计算图 在tensorflow中编写代码可以分成两个部分,首先是要定义一个计算…
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为什么选取了这个模型? 3.模型的数据从哪里来? 4.模型的优化过程? 5.项目可以进一步提升的方向. 对于以比特币为首的数字货币近期的表现,只能用疯狂来形容.来自比特币交易平台的最新价格行情显示,就在此前一天,比特币盘中最高价格达到29838.5元,距离3万元大关仅有咫尺之遥.比特币最近火热的行情,…
用Tensorflow搭建神经网络的一般步骤如下: ① 导入模块 ② 创建模型变量和占位符 ③ 建立模型 ④ 定义loss函数 ⑤ 定义优化器(optimizer), 使 loss 达到最小 ⑥ 引入激活函数, 即添加非线性因素 (线性回归问题跳过此步骤) ⑦ 训练模型 ⑧ 检验模型 ⑨ 使用模型预测数据 ⑩ 保存模型 ⑪ 使用Tensorboard的可视化功能 下面以一个简单的线性回归问题为例: 首先是训练模型的代码: train_model.py # ① 导入模块 import tensor…
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中存储变量集合 全局变量集合 reshape 加载时是否恢复变量形状 True sharded 是否将变量轮循放在所有设备上 True max_to_keep 保留最近检查点个数 5 restore_sequentially 是否按顺序恢复变量,模型…
一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1)需要重新建立图谱,来实现模型的加载 2)独家加载模型 模型的保存与训练加载: tf.train.Saver(<var_list>,<max_to_keep>) var_list: 指定要保存和还原的变量,作为一个dict或者list传递 max_to_keep: 指示要保留的最大检查…