tf.keras.layers.MaxPool2D 简介】的更多相关文章

本次使用的是2.0测试版,正式版估计会很快就上线了 tf2好像更新了蛮多东西 虽然教程不多 还是找了个试试 的确简单不少,但是还是比较喜欢现在这种写法 老样子先导入库 import tensorflow as tf import tensorflow_datasets as tfds import numpy as np import matplotlib.pyplot as plt import math import tqdm import tqdm.auto tqdm.tqdm = tqd…
tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义,需要在整个验证集上计算,而 tf.keras 在训练过程中计算 acc.loss 都是一个 batch 计算一次的,最后再平均起来.Keras 2.0 版本将 precision, recall, fbeta_score, fmeasure 等 metrics 移除了. 虽然 tf.keras.me…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
Update:2019/09/21 使用 tf.keras 时,请使用 tf.keras.optimizers 里面的优化器,不要使用 tf.train 里面的优化器,不然学习率衰减会出现问题. 使用 tf.keras 过程中,如果要使用 learning rate decay,不要使用 tf.train.AdamOptimizer() 等 tf.train 内的优化器,因为学习率的命名不同,导致 tf.keras 中学习率衰减的函数无法使用,一般都会报错 "AttributeError: 'T…
自定义tf.keras.Model需要注意的点 model.save() subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_format="tf" NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work…
论文 Decoupled Weight Decay Regularization 中提到,Adam 在使用时,L2 与 weight decay 并不等价,并提出了 AdamW,在神经网络需要正则项时,用 AdamW 替换 Adam+L2 会得到更好的性能. TensorFlow 2.0 在 tensorflow_addons 库里面实现了 AdamW,目前在 Mac 和 Linux 上可以直接 pip install tensorflow_addons,在 windows 上还不支持,但也可以…
系列文章目录: Tensorflow2.0 介绍 Tensorflow 常见基本概念 从1.x 到2.0 的变化 Tensorflow2.0 的架构 Tensorflow2.0 的安装(CPU和GPU) Tensorflow2.0 使用 "tf.data" API "tf.keras"API 使用GPU加速 安装配置GPU环境 使用Tensorflow-GPU 3 TensorFlow2.0使用 3.2 "tf.keras"API Keras是一…
代码和其他资料在 github 一.tf.keras概述 首先利用tf.keras实现一个简单的线性回归,如 \(f(x) = ax + b\),其中 \(x\) 代表学历,\(f(x)\) 代表收入,分别代表输入特征和输出值.为了描述预测目标与真实值之间的整体误差最小,需要定义一个损失函数,数学描述为\((f(x) - y)^2\),即预测值与真实值差值的平方的均值.优化的目标是求解参数 \(a,b\) 使其损失函数最小. import tensorflow as tf import pand…
TensorFlow 高级接口使用简介(estimator, keras, data, experiment) TensorFlow 1.4正式添加了keras和data作为其核心代码(从contrib中毕业),加上之前的estimator API,现在已经可以利用Tensorflow像keras一样方便的搭建网络进行训练.data可以方便从多种来源的数据输入到搭建的网络中(利用tf.features可以方便的对结构化的数据进行读取和处理,比如存在csv中的数据,具体操作可以参考这篇文档):ke…
目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorch 模型的参数,保存至 hdf5 文件 可能遇到的问题 验证从 PyTorch 导出的 AlexNet 预训练模型 Attentions References tf.keras 的预训练模型都放在了'tensorflow.python.keras.applications' 目录下,在 tensor…