课程: 6.891 (Fall 2003): Machine Learning Approaches for Natural Language Processing http://www.ai.mit.edu/courses/6.891-nlp/ CS 276 / LING 286 Information Retrieval and Web Search Spring 2012 http://www.stanford.edu/class/cs276/index.html CS 224d DL f…
自然语言处理(NLP)相关学习资料/资源 1. 书籍推荐 自然语言处理 统计自然语言处理(第2版) 作者:宗成庆 出版社:清华大学出版社:出版年:2013:页数:570 内容简介:系统地描述了神经网络之前的基于统计的NLP方法,能够对NLP各项任务以及经典的算法学习了解. 数学之美(第2版) 作者:吴军 出版社:人民邮电出版社:出版年:2014:页数:312 内容简介:讲解了NLP里常用的数学模型,并把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力. Speech and Lan…
在过去的几个月中,我一直在收集自然语言处理(NLP)以及如何将NLP和深度学习(Deep Learning)应用到聊天机器人(Chatbots)方面的最好的资料. 时不时地我会发现一个出色的资源,因此我很快就开始把这些资源编制成列表. 不久,我就发现自己开始与bot开发人员和bot社区的其他人共享这份清单以及一些非常有用的文章了. 在这个过程中,我的名单变成了一个指南,经过一些好友的敦促和鼓励,我决定和大家分享这个指南,或许是一个精简的版本 - 由于长度的原因. 这个指南主要基于Denny Br…
近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,下面是一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提出来了,但是真正火起来应该算是google mind团队的这篇论文<Recurrent…
..................................内容纯转发+收藏................................... 学习自然语言这一段时间以来接触和听说了好多开源的自然语言处理工具,在这里做一下汇总方便自己以后学习,其中有自己使用过的也有了解不是很多的,对于不甚了解的工具以后学习熟悉了会做更新的. 1.IKAnalyzer IK Analyzer是一个开源的,基于Java语言开发的轻量级的中文分词工具包.从2006.12推出1.0版本开始,IK Analy…
1. 国际学术组织.学术会议与学术论文 自然语言处理(natural language processing,NLP)在很大程度上与计算语言学(computational linguistics,CL)重合.与其他计算机学科类似,NLP/CL有一个属于自己的最权威的国际专业学会,叫做The Association for Computational Linguistics(ACL,URL:http://aclweb.org/),这个协会主办了NLP/CL领域最权威的国际会议,即ACL年会,ACL…
自然语言处理知识太庞大了,网上也都是一些零零散散的知识,比如单独讲某些模型,也没有来龙去脉,学习起来较为困难,于是我自己总结了一份知识体系结构,不足之处,欢迎指正.内容来源主要参考黄志洪老师的自然语言处理课程.主要参考书为宗成庆老师的<统计自然语言处理>,虽然很多内容写的不清楚,但好像中文NLP书籍就这一本全一些,如果想看好的英文资料,可以到我的GitHub上下载:  http://github.com/lovesoft5/ml  下面直接开始正文: 一.自然语言处理概述           …
核心期刊排名查询 http://portal.core.edu.au/conf-ranks/ http://portal.core.edu.au/jnl-ranks/ 1.机器学习推荐会议 ICML——很难读懂,值得一读 NIPS ——主要看文章摘要 ECML 2.数据挖掘推荐会议: ICDE ICDM——略逊 CIKM KDD 3.IR推荐会议 SIGIR WWW 4.NLP推荐会议 ACL EMNLP EAC NNACL coling CCF推荐会议列表 expert system with…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all you need>论文受到了大家广泛关注,自注意力(self-attention)机制开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.对这篇论文中的self-attention以及一些相关工作进行了学习…
同步笔者CSDN博客(https://blog.csdn.net/qq_37608890/article/details/81513882). 一.概述 本文将要讨论NLP的一个重要话题:Word2Vec,它是一种学习词嵌入或分布式数字特征表示(即向量)的技术.其实,在开展自然语言处理任务时,一个比较重要的基础工作就是有关词表示层面的学习,因为良好的特征表示所对应的词,能够使得上下午语义内容得以很好地保留和整体串起来.举个例子,在特征表示层面,单词“forest”和单词“oven”是不同的,也很…