题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1096 设 f[i] 为 i 作为最后一个仓库时前 i 个工厂的答案,最后的答案当然是 f[n]: f[i] = min{ f[j] + ∑(j+1<=k<=i)p[k]*(x[i]-x[k]) + c[i] } , 1<=j<i 令 s[i] = ∑(1<=j<=i)p[j],t[i] = ∑(1<=j<=i)p[j]*x[j] 则 f[i] = mi…
L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci.对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外…
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci.对…
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Status][Discuss] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先…
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci.对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司…
好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增就行了. 放一个证明题解. 设f[i]表示在i点建仓库的最小费用,易得方程:f[i]=min(f[j]+(x[i]-x[j+1])*p[j+1]+(x[i]-x[j+1])*p[j+2]...) =min(f[j]+c[i]+x[i]*(p[j+1..i])-(x[j+1]*p[j+1]+...+x…
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j]+\sum\limits_{k=j+1}^{i}P[k](X[i]-X[k])\}+C[i]\) 于是我们枚举\(i\),再从\(i-1\)开始从大到小枚举\(j\),并记录一个前缀和,每次更新一下\(f[i]\).洛咕上貌似拿了66分,数据太水: #include <cstdio> using…
大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\(i\)个家伙,并且在第\(i\)个家伙处建仓的答案 那么有 \[dp[i] = min_{j=1}^{i-1}\{dp[j] + \sum_{k=j+1}^{i-1} p[k] * (x[i] - x[k])\} + c[i]\] 化简发现,优劣比较条件为 \[\frac{dp[p]-dp[q]+…
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Status][Discuss] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先…
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Status][Discuss] Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先…
AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1096 [题解] 设输入的三个数组为a,b,c sumb维护b数组的前缀和,sumab维护a*b的前缀和. 则状态转移方程:f[i]=min{f[j]+c[i]+a[i]*(sumb[i-1]-sum[j])-(sumab[i-1]-sumab[j])} 斜率表达式:(f[j]+sumab[j]-f[k]-sumab[k])/(sumb[j]-sumb[k])>a[i] /********…
题目:https://loj.ac/problem/10189 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define db double #define ll long long using namespace std; ; int n,d[N],p[N],C[N]; ll s[N],c[N],dp[N]; int q[N],he,tl; int r…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 课上讲的题,还是参考了博客...:https://www.cnblogs.com/GXZlegend/p/8615607.html 这道题和之前写的斜率优化不同的一点是用单调栈维护上凸壳,而且需要二分查找答案: 为什么感觉每次写出来的斜率优化DP都不一样...还是没有理解透彻... 代码如下: #include<iostream> #include<cstdio> #i…
这个题目中 斜率优化DP相当于存在一个 y = kx + z 然后给定 n 个对点 (x,y)  然后给你一个k, 要求你维护出这个z最小是多少. 那么对于给定的点来说 我们可以维护出一个下凸壳,因为如果存在一个上突壳的话,那么上突壳的点是一定不会被选上的. 所以对于解来说,只有下凸壳的点再会被选到. 所以我们就可以用单调队列维护处这个下凸壳. 假如我们保证给定的k是单调递增的, 那么我们就可以把前面一段不需要的东西给删掉. 假如k不是单调的,则我们就可以用二分找到第一个 >  询问k的答案.…
L公司有N个工厂,由高到底分布在一座山上. 工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用. 突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏. 由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci. 对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外…
[BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci.对于没…
4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[i]-s[k])^2 \}\) 发现可以斜率优化,很久没写忘记了60分暴力走人 拆开平方,\(f[i][p]=-2s_i s_k + f[k][p-1] + s_k^2 - s_i^2\) 对于两个转移\(j,k\),j比k优时\[ slope(j,k)=\frac{f[j]+s_j^2-f[k]-…
Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci.对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏…
如果有一块土地的长和宽都小于另一块土地的长和宽,显然这块土地属于“赠送土地”. 我们可以排序一下将这些赠送土地全部忽略掉,一定不会影响到答案. 那么剩下的土地就是长递减,宽递增的.令dp[i]表示购买前i个土地的最小代价. 显然有dp[i]=min(dp[j]+ku[i]*ch[j+1]).(j<i). 其中ku[i]表示第i个土地的宽,ch[i]表示第i个土地的长. 这个式子得用斜率优化一下.很normal,推出式子就解决了. # include <cstdio> # include…
题面 BZOJ传送门(中文题面但是权限题) HDU传送门(英文题面) 分析 定义f[i]f[i]f[i]表示在iii时间(离散化之后)卖出手上的机器的最大收益.转移方程式比较好写f[i]=max{f[j]−p[j]+r[j]+(d[i]−d[j]−1)∗g[j]}f[i]=max\{f[j]-p[j]+r[j]+(d[i]-d[j]-1)*g[j]\}f[i]=max{f[j]−p[j]+r[j]+(d[i]−d[j]−1)∗g[j]} 显然可以斜率优化,移项之后得到(f[j]−p[j]+r[j…
Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列--也就是一开始得到的整个序列): 2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列.   每次进行上述步骤之后,小H将会得到一定的分数.这个分数为两个新序列中元素和的乘积.小H希望选择一种最佳的分割方式,使得k轮之后…
题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中首尾颜色相同的情况下最优,所以每次选取一段里末位的$s_i$变成柠檬,于是有$f_i=max_{j \le i}{f_{j-1}+s_i\times(pre_i-pre_j+1)^2}$ ,$pre_i$表示前$i$个贝壳里$s_i$出现了几次 令$j<k$,假设$f_{j-1}+s_i\times…
dp[i]=min(dp[j]+(sum[i]-sum[j]+i-j-1-L)^2) (j<i) 令f[i]=sum[i]+i,c=1+l 则dp[i]=min(dp[j]+(f[i]-f[j]-c)^2) 1.证明决策单调性 假设在状态i处的k决策优与j决策,即 dp[k]+(f[i]-f[k]-c)^2<=dp[j]+(f[i]-f[j]-c)^2 则对于i后的所有状态t,要证明决策单调性 即dp[k]+(f[t]-f[k]-c)^2<=dp[j]+(f[t]-f[j]-c)^2 只…
和上题类似吧.... #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define maxn 1000050 using namespace std; long long n,x[maxn],p[maxn],c[maxn],sum1[maxn],sum2[maxn],f[maxn],q[maxn],l,r,g[maxn]; long long read()…
就是套路咯,设s[i]为1+2+...i 首先列出dp方程\( f[i]=min(f[j]+a[i]+(i-j)*i-(s[i]-s[j])) \) 然后推一推 \[ f[i]=f[j]+a[i]+(i-j)*i-(s[i]-s[j]) \] \[ f[i]=f[j]+a[i]+i*i-i*j-s[i]+s[j] \] \[ i*j+f[i]=f[j]+s[j]+i*i+a[i]-s[i] \] \[ k=i,b=f[i],y=f[j]+s[j]+i*i+a[i]-s[i] \] 就没啦 #in…
方程: $\Large f(i)=min(f(j)+\sum\limits_{k=j+1}^{i}(x_i-x_k)*p_k)+c_i$ 显然这样的方程复杂度为$O(n^3)$极限爆炸,所以我们要换一个方程 设$S(i)=\sum\limits_{k=1}^i(x_n-x_k)*p_k$且$A(i)=\sum\limits_{k=1}^ip_k$ 则$S(i)-S(j)=\sum\limits_{k=j+1}^i(x_n-x_k)*p_k$,这和原方程很像 最终方程就可以化成 $\Large f…
传送门 斜率优化dp经典题. 令f[i]表示i这个地方修建仓库的最优值,那么答案就是f[n]. 用dis[i]表示i到1的距离,sump[i]表示1~i所有工厂的p之和,sum[i]表示1~i所有工厂的p*dis之和. 那么有状态转移方程: f[i]=min(f[j]+dis[i]∗(sump[i−1]−sump[j])−(sum[i]−sum[j])+c[i])" role="presentation" style="position: relative;&quo…
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器…
3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 10 2 3 1 5 4 5 6 3 1 2 Sample Output 18 HINT 1<=N<=10^6,1<=Ai<=10^9 题解: 斜率优化DP: 首先将数组倒置 设定dp[i] 为前i的点的最优答案 易得 dp[i] = min{dp…
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<…