关于欧几里德算法(gcd)的证明】的更多相关文章

这个困扰了自己好久,终于找到了解释,还有自己改动了一点点,耐心看完一定能加深理解   扩展欧几里德算法-求解不定方程,线性同余方程. 设过s步后两青蛙相遇,则必满足以下等式: (x+m*s)-(y+n*s)=k*l(k=0,1,2....) 稍微变一下形得: (n-m)*s+k*l=x-y 令n-m=a,k=b,x-y=c,即 a*s+b*l=c 只要上式存在整数解,则两青蛙能相遇,否则不能. 首先想到的一个方法是用两次for循环来枚举s,l的值,看是否存在s,l的整数解,若存在则输入最小的s,…
递归: int gcd(int a,int b) { ?a:gcd(b,a%b); } 非递归: int gcd(int m,int n) { int r; ) { m=n; n=r; } return n; } 不用考虑那个数值大小的问题,直接进行运算 数据测试: gcd(8,12) 1.while  r=8%12=8 m=12 n=8 2.while r=12%8=4 m=8 n=4 3.while r=8%4=0  //跳出循环 cout n //n=4…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a…
有关欧几里德算法整理: 1.一些相关概念: <1>.整除性与约数: ①一个整数可以被另外一个整数整除即为d|a(表示d整除a,通俗的说是a可以被d整除),其含义也可以说成,存在某个整数k,使得a=kd. ②如果d|a且d>=0,则称d是a的约数. ③如果d|a,则-d|a,即a的任何约数的负数同样可以整除a.但一般规定,约数为非负数.非零整数a的约数应至少为1,且d<=|a|. ④因子:整数a的非平凡约数(除了1和它本身的约数)称为a的因子. <2>.素数和合数. &l…
<pre name="code" class="cpp">/* 扩展欧几里德算法 基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by. 证明:设 a>b. 1,显然当 b=0,gcd(a,b)=a.此时 x=1,y=0: 2,ab!=0 时 设 ax1+by1=gcd(a,b); bx2+(a mod b)y2=gcd(b,a mod b); 根据…
为什么老是碰上 扩展欧几里德算法 ( •̀∀•́ )最讨厌数论了 看来是时候学一学了 度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定有解 (废话,把x和y乘k倍就好了) 所以,这个公式我们写作ax+by = d,(gcd(a, b) | d) gcd(a, b) | d,表示d能整除gcd,这个符号在数学上经常见 那么已知 a,b 求 一组解…
题目:写个"欧几里德算法"的小程序 (1) 描述 我知识浅薄,一开始被"欧几里德"的大名唬住了,去搜了一下才知道这就是高中时学过的"辗转相除法" 辗转相除法的用处 求两个正整数的最大公约数 示例 a = 30,b = 18,求 a 与 b 的最大公约数 a % b = 12 => a = 18, b = 12 a % b = 6 => a = 12, b = 6 a % b = 0 => 此时的 b 即为原来两数的最大公约数 总…
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地蹦,但只可以在(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)八个点跳来跳去. 现在,Dr. Kong想在机器人卡尔身上设计一个计数器,记录它蹦蹦跳跳的数字变化(S,T),即,路过的位置坐标值之和. 你能帮助Dr. Kong判断机器人能否…
题目链接: 传送门 青蛙的约会 Time Limit: 1000MS     Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永…
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置之分,应对比两种情况 i,a左b右,得出方程 ax1 - by1 = d ; ii,b左a右,得出方程 bx2 - ay2 = d . 2,利用扩展欧几里德算法,解出(x1,y1).(x2,y2),并求出最小x1和x2,以及相对应的y1,y2. 3,输出x1+y1和x2+y2 中的最小值. 三,步骤…