Splits a tensor into sub tensors】的更多相关文章

https://www.tensorflow.org/api_docs/python/tf/split # 'value' is a tensor with shape [5, 30] # Split 'value' into 3 tensors with sizes [4, 15, 11] along dimension 1 split0, split1, split2 = tf.split(value, [4, 15, 11], 1) tf.shape(split0) # [5, 4] tf…
1.tf.concat tf.concat的作用主要是将向量按指定维连起来,其余维度不变:而1.0版本以后,函数的用法变成: t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] #按照第0维连接 tf.concat( [t1, t2],0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] #按照第1维连接 tf.concat([t1, t2],1) ==> [[1, 2,…
Effective TensorFlow Table of Contents TensorFlow Basics Understanding static and dynamic shapes Scopes and when to use them Broadcasting the good and the ugly Feeding data to TensorFlow Take advantage of the overloaded operators Understanding order…
https://www.zhihu.com/question/55720139 Deep Learning with PyTorch: A 60 Minute Blitz Author: Soumith Chintala Goal of this tutorial: Understand PyTorch’s Tensor library and neural networks at a high level. Train a small neural network to classify im…
目录 1. 快速入门PYTORCH 1.1. 什么是PyTorch 1.1.1. 基础概念 1.1.2. 与NumPy之间的桥梁 1.2. Autograd: Automatic Differentiation 1.2.1. Tensor 1.2.2. Gradients 1.3. Neural Networks 1.3.1. Defind the network 1.3.2. Process inputs and call backward 1.3.3. Loss function 1.3.4…
Jittor框架API 这里是Jittor主模块的API文档,可以通过import jittor来获取该模块. classjittor.ExitHooks exc_handler(exc_type, exc, *args) exit(code=0) hook() classjittor.Function(*args, **kw) Function Module for customized backward operations Example 1 (Function can have mult…
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorch系列(二) - PyTorch数据读取 PyTorch系列(三) - PyTorch网络构建 PyTorch系列(四) - PyTorch网络设置 参考: PyTorch documentation PyTorch 码源 本文首先介绍了有关预处理包的源码,接着介绍了在数据处理中的具体应用: 其主要…
[本文摘自网络,仅供学习使用] 官网上对TensorFlow的介绍是,一个使用数据流图(data flow graphs)技术来进行数值计算的开源软件库.数据流图中的节点,代表数值运算:节点节点之间的边,代表多维数据(tensors)之间的某种联系.我们可以在多种设备(含有CPU或GPU)上通过简单的API调用来使用该系统的功能. TensorFlow包含构建数据流图与计算数据流图等基本步骤,图中的节点表示数学操作,图中连结各节点的边表示多维数组,即:tensors(张量). 张量是Tensor…
%matplotlib inline Autograd: 自动求导机制 PyTorch 中所有神经网络的核心是 autograd 包. 我们先简单介绍一下这个包,然后训练第一个简单的神经网络. autograd包为张量上的所有操作提供了自动求导. 它是一个在运行时定义的框架,这意味着反向传播是根据你的代码来确定如何运行,并且每次迭代可以是不同的. 示例 张量(Tensor) torch.Tensor是这个包的核心类.如果设置 .requires_grad 为 True,那么将会追踪所有对于该张量…
之前在测试NN中各个层的时间的时候,遇到一个非常奇怪的问题,分别使用Caffe自己的gpu方法和cuDNN方法,在卷积上性能差异非常大,但是在pooling层上基本没有变化.抽空检查了代码之后,发现是layer_factory模式导致的问题.下面就以下几个方面来进行 1.工厂模式 2.layer_factory详解 3.layer_factory中坑 4.问题影响分析 1.工厂模式 工厂模式是设计模式中的一种,面向的业务大概是在编码时不能预见需要创建那种类的实例,系统不依赖产品类如何被创建.组合…
All the matrials come from Machine Learning class in Polyu,HK and I reorganize them and add reference materials.I promise that I only use them to study and non-proft .ipynb源文件可通过我的onedrive下载:https://1drv.ms/u/s!Al86h1dThXMNxF-J7FKHKTPkf5yr?e=SAgALh W…
[源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架 目录 [源码解析] 深度学习分布式训练框架 horovod (5) --- 融合框架 0x00 摘要 0x01 架构图 0x02 统一层 0x03 Horovod OP 类体系 3.1 基类 HorovodOp 3.2 派生类 AllreduceOp 3.3 适配类 MPIAllreduce 3.4 后台线程如何使用 3.4.1 具体collective 操作 3.4.2 调用不同类型的OP 3.4.3 取一个适配层…
[源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 目录 [源码解析] Pytorch 如何实现后向传播 (1)---- 调用引擎 0x00 摘要 0x01 前文回顾 1.1 训练过程 1.2 例子 1.3 源码剖析 0x02 Python 调用过程 2.1 调用 2.2 引擎 0x03 c++世界 3.1 支撑系统 3.1.1 Edge 3.1.2 Edge 相关函数 3.1.3 Python 扩展 3.2 引入 3.2.1 初始化 3.2.1.1 初始化继承体系 3.2…
[源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组 目录 [源码解析] PyTorch 分布式(7) ----- DistributedDataParallel 之进程组 0x00 摘要 0x01 回顾 1.1 基础概念 1.2 初始化进程组 0x02 概念与设计 2.1 功能 2.2 本质 0x03 使用 0x04 构建 4.1 Python 世界 4.1.1 rendezvous 4.1.2 _new_process_group_…
[源码分析] Facebook如何训练超大模型 --- (2) 目录 [源码分析] Facebook如何训练超大模型 --- (2) 0x00 摘要 0x01 回顾 1.1 ZeRO 1.1.1 ZeRO-1 1.1.2 ZeRO-2 1.1.3 ZeRO-3 1.2 DDP VS FSDP 0x02 总体逻辑 2.1 FSDP 2.2 原始ZeRO 1.2.1 初始化 1.2.2 前向传播 1.2.3 反向传播 2.3 FSDP代码 2.3.1 初始化 2.3.2 前向传播 2.3.3 分层优…
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (6) --- Distributed hash表 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (6) --- Distributed hash表 0x00 摘要 0x01 简述 1.1 基类 1.2 功能 0x02 定义 2.1 思路 2.2 代码 0x03 HashTable 3.1 定义 3.2 HashTableContainer 3.3 调用 3.4 concurrent_unor…
此篇博客内容为短暂存留记录(项目使用过程还未记录),后续将会更新完整学习流程.. 1.根据官网上的链接安装有两种方式: (1)pip直接安装 pip install transformers # 安装时间长,出现Timeout Error的可能性大,个人不建议 (2)GIthub下载源包 git clone https://github.com/huggingface/transformers # 下载时间长一点(网盘自取) cd transformers pip install . trans…
Tensors类似于numpy的ndarrays,但是可以在GPU上使用来加速计算. 一.Tensors的构建 from __future__ import print_function import torch 构建未初始化的5x3矩阵: x = torch.Tensor(5, 3) print(x) 输出结果: -2.9226e-26 1.5549e-41 1.5885e+14 0.0000e+00 7.0065e-45 0.0000e+00 7.0065e-45 0.0000e+00 4.…
张量(Tensor) 在Tensorflow中,变量统一称作张量(Tensor). 张量(Tensor)是任意维度的数组. 0阶张量:纯量或标量 (scalar), 也就是一个数值,例如,\'Howdy\' 或 5 1阶张量:向量 (vector)或矢量,也就是一维数组(一组有序排列的数),例如,[2, 3, 5, 7, 11] 或 [5] 2阶张量:矩阵 (matrix),也就是二维数组(有序排列的向量),例如,[[3.1, 8.2, 5.9][4.3, -2.7, 6.5]] 3阶张量:三维…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 torch.autograd就是为了方便用户使用,专门开发的一套自动求导引擎,她能够根据输入和前向传播过程自动构建计算图,并执行反向传播 1.Variable 深度学习算法的本质是通过反向函数求导数,pytorch的Autograd模块实现了此功能.在Tensor上的所有操作,Autograd都能够为他们自动提供微分,避免手动计算的复杂…
- 重点掌握基本张量使用及与numpy的区别 - 掌握张量维度操作(拼接.维度扩展.压缩.转置.重复……) numpy基本操作: numpy学习4:NumPy基本操作 NumPy 教程 1. Tensorflow Tensorflow一些常用基本概念与函数(1,2,3,4) tensorflow与numpy函数的选择 Tensorflow 和numpy区别 相同点: 都提供n位数组 不同点: numpy支持ndarray,而Tensorflow里有tensor:numpy不提供创建张量函数和求导…
[Question]: TensorFlow has two ways to evaluate part of graph: Session.run on a list of variables and Tensor.eval. Is there a difference between these two? [Answer]: If you have a Tensor t, calling t.eval() is equivalent to calling tf.get_default_ses…
使用 TensorFlow 之前你需要了解关于 TensorFlow 的以下基础知识 :• 使用图 (graphs) 来表示计算 .• 在会话 ( Session ) 中执行图 .• 使用张量 (tensors) 来代表数据 .• 通过变量 ( Variables ) 维护状态 .• 使用供给 ( feeds ) 和取回 ( fetches ) 将数据传入或传出任何操作 概述 TensorFlow 是一个以图 (graphs) 来表示计算的编程系统 , 图中的节点被称之为 op(op-erati…
在将 列表或元组 数据转换成 dataset类型时 import numpy as np import tensorflow as tffrom sklearn.cross_validation import train_test_split pic_array=np.ones((60,160,3)) #图片的长宽为60*160,每个像素点的由rgb3个值表示像素pic_txt_array=np.ones((26,4)) #表示单个字母的向量长为26,共4个字母data_x=[pic_array…
tensorflow函数解析:Session.run和Tensor.eval 翻译 2017年04月20日 15:05:50 标签: tensorflow / 机器学习 / 深度学习 / python 7774 原问题链接: http://stackoverflow.com/questions/33610685/in-tensorflow-what-is-the-difference-between-session-run-and-tensor-eval 译: 问题: tensorflow有两种…
x = tf.placeholder(tf.float32, [None, 784]) x isn't a specific value. It's a placeholder, a value that we'll input when we ask TensorFlow to run a computation. We want to be able to input any number of MNIST images, each flattened into a 784-dimensio…
中译名:张量 定义: from wiki: In mathematics, tensors are geometric objects that describe linear relations between geometric vectors, scalars, and other tensors. tensors 是一类几何模型,它描述了向量.标量以及其他tensor之间的线性关系. 这个定义并不是很清晰,个人理解是: 当我们需要在维度层面上去理解数据时,那么张量就是这些具有各种不同维度…
Tensors 1. construst matrix 2. addition 3. slice from __future__ import print_function import torch # construst a 5*3 matrix. # method 1 # x = torch.LongTensor(5, 3) x = torch.FloatTensor(5, 3) print(x) # method 2 x = torch.randn(5, 3) print(x) # get…
Tensors的一些应用 ''' Tensors和numpy中的ndarrays较为相似, 因此Tensor也能够使用GPU来加速运算 ''' # from _future_ import print_function import torch x = torch.Tensor(5, 3) # 构造一个未初始化的5*3的矩阵 x2 = torch.rand(5, 3) # 构造一个随机初始化的矩阵 the same as # print(x.size()) # torch.Size([5, 3]…
PyTorch Tensors are just like numpy arrays, but they can run on GPU.No built-in notion of computational graph, or gradients, or deep learning.Here we fit a two-layer net using PyTorch Tensors: import torch dtype = torch.FloatTensor # step 1: create r…