前言 本篇继续我们的微软挖掘算法系列总结,前几篇我们分别介绍了:微软数据挖掘算法:Microsoft 决策树分析算法(1).微软数据挖掘算法:Microsoft 聚类分析算法(2).微软数据挖掘算法:Microsoft Naive Bayes 算法(3).微软数据挖掘算法:Microsoft 时序算法(5),后续还补充了二篇微软数据挖掘算法:结果预测篇(4).微软数据挖掘算法:Microsoft 时序算法之结果预测及其彩票预测(6),看样子有必要整理一篇目录了,不同的算法应用的场景也是不同的,每…
本系列文章主要是涉及内容为微软商业智能(BI)中一系列数据挖掘算法的总结,其中涵盖各个算法的特点.应用场景.准确性验证以及结果预测操作等,所采用的案例数据库为微软的官方数据仓库案例(AdventureWorksDW2008R2),数据库基于Microsoft SQL Server 2008,主要涉及DM模块,目录整理如下: 微软数据挖掘算法:Microsoft 决策树分析算法(1) 微软数据挖掘算法:Microsoft 聚类分析算法(2) 微软数据挖掘算法:Microsoft Naive Bay…
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,本篇我们将要总结的算法为:Microsoft顺序分析和聚类分析算法,此算法为上一篇中的关联规则分析算法的一个延伸,为关联规则分析算法所形成的种类进行了更细粒度的挖掘,挖掘出不同种类内部的事例间的顺序原则,进而用以引导用户进行消费. 应用场景介绍 Microsoft顺序分析和聚类分析算法,根据…
微软数据挖掘算法:Microsoft 目录篇 介绍: Microsoft 决策树算法是分类和回归算法,用于对离散和连续属性进行预测性建模. 对于离散属性,该算法根据数据集中输入列之间的关系进行预测. 它使用这些列的值(也称之为状态)预测指定为可预测的列的状态. 具体地说,该算法标识与可预测列相关的输入列. 例如,在预测哪些客户可能购买自行车的方案中,假如在十名年轻客户中有九名购买了自行车,但在十名年龄较大的客户中只有两名购买了自行车,则该算法从中推断出年龄是自行车购买情况的最佳预测因子. 决策树…
前言 有段时间没有进行我们的微软数据挖掘算法系列了,最近手头有点忙,鉴于上一篇的神经网络分析算法原理篇后,本篇将是一个实操篇,当然前面我们总结了其它的微软一系列算法,为了方便大家阅读,我特地整理了一篇目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,我打算将微软商业智能中在DM这块所用到的算法全部集中在这个系列中,每篇包含简要算法原理.算法特点.应用场景以及具体的操作详细步骤,基本能涵盖大部分的商业数据挖掘的应用场景,有兴趣的童鞋可以点击查阅.本篇我们将要总结的算法为:Microsoft…
前言 本篇我们将总结的算法为Microsoft时序算法的结果预测值,是上一篇文章微软数据挖掘算法:Microsoft 时序算法(5)的一个总结,上一篇我们已经基于微软案例数据库的销售历史信息表,利用Microsoft时序算法对其结果进行了预测,并且相应形成了折线预测图和模型依赖属性,有兴趣的同学可以点击查看,但是上篇文章的能给出的只是一个描述趋势的折线图,从图中我们能分析出的知识也只能通过语言描述,而这里面缺少更确切的数据支撑,作为一个凡事以数据说话的年代显然这是不够的,本篇我们将根据上一篇的预…
前言 本篇文章同样是继续微软系列挖掘算法总结,前几篇主要是基于状态离散值或连续值进行推测和预测,所用的算法主要是三种:Microsoft决策树分析算法.Microsoft聚类分析算法.Microsoft Naive Bayes 算法,当然后续还补充了一篇结果预测篇,所涉及的应用场景在前几篇文章中也有介绍,有兴趣的同学可以点击查看,本篇我们将总结的算法为Microsoft时序算法,此算法也是数据挖掘算法中比较重要的一款,因为所有的推算和预测都将利用于未来,而这所有的一切都将有一条时间线贯穿始终,而…
介绍: Microsoft Naive Bayes 算法是一种基于贝叶斯定理的分类算法,可用于探索性和预测性建模. Naïve Bayes 名称中的 Naïve 一词派生自这样一个事实:该算法使用贝叶斯技术,但未将可能存在的依赖关系考虑在内. 和其他 Microsoft 算法相比,此算法所需运算量较少,因而有助于快速生成挖掘模型,从而发现输入列与可预测列之间的关系. 可以使用该算法进行初始数据探测,然后根据该算法的结果使用其他运算量较大.更加精确的算法创建其他挖掘模型. 算法的原理 在给定可预测…
介绍: Microsoft 聚类分析算法是一种"分段"或"聚类分析"算法,它遍历数据集中的事例,以将它们分组到包含相似特征的分类中. 在浏览数据.标识数据中的异常及创建预测时,这些分组十分有用. 聚类分析模型标识数据集中可能无法通过随意观察在逻辑上得出的关系. 例如,轻松就能猜想到,骑自行车上下班的人的居住地点通常离其工作地点不远. 但该算法可以找出有关骑自行车上下班人员的其他并不明显的特征. 在下面的关系图中,分类 A 表示有关通常开车上班人员的数据,而分类 B…
随着大数据时代的到来,数据挖掘的重要性就变得显而易见,几种作为最低层的简单的数据挖掘算法,现在利用微软数据案例库做一个简要总结. 应用场景介绍 其实数据挖掘应用的场景无处不在,很多的环境都会应用到数据挖掘,之前我们没有应用是因为还没有学会利用数据,或者说还没有体会到数据的重要性,现在随着IT行业中大数据时代的到来,让我一起去拥抱大数据,闲言少叙,此处我们就列举一个最简单的场景,一个销售厂商根据以往的销售记录单,通过数据挖掘技术预测出一份可能会购买该厂商产品的客户名单,我相信这也是很多销售机构想要…
前言 此篇为微软系列挖掘算法的最后一篇了,完整该篇之后,微软在商业智能这块提供的一系列挖掘算法我们就算总结完成了,在此系列中涵盖了微软在商业智能(BI)模块系统所能提供的所有挖掘算法,当然此框架完全可以自己扩充,可以自定义挖掘算法,不过目前此系列中还不涉及,只涉及微软提供的算法,当然这些算法已经基本涵盖大部分的商业数据挖掘的应用场景,也就是说熟练了这些算法大部分的应用场景都能游刃有余的解决,每篇算法总结包含:算法原理.算法特点.应用场景以及具体的操作详细步骤.为了方便阅读,我还特定整理一篇目录:…
前言 本篇文章继续我们的微软挖掘系列算法总结,前几篇文章已经将相关的主要算法做了详细的介绍,我为了展示方便,特地的整理了一个目录提纲篇:大数据时代:深入浅出微软数据挖掘算法总结连载,有兴趣的童鞋可以点击查阅,在开始Microsoft 神经网络分析算法之前,本篇我们先将神经网络分析算法做一个简单介绍,此算法由于其本身的复杂性,所以我打算在开始之前先将算法原理做一个简单的总结,因为本身该算法就隶属于高等数学的研究范畴,我们对算法的推断和验证过程不做研究,只介绍该算法特点以及应用场景,且个人技术能力有…
1.算法功能简介 缓冲区分析是指有点.线.面实体为基础,自动建立其周围一定宽度范围内的缓冲区多边形图层,然后建立该图层与目标图层的叠加,进行分析而得到的所需的结果.他是用来解决邻近度问题的控件分析工具之一.邻近度描述了地理空间中两个地物距离相近的程度. 缓冲区分析一般涉及点.线.面要素对象的操作,基于点要素的缓冲区,通常以点为圆心.以一定距离为半径的圆:基于线要素的缓冲区,通常是以线为中心轴线,距中心轴线一定距离的平行条带多边形:基于面要素多边形边界的缓冲区,向外或向内扩展一定距离以生成新的多边…
在java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行.那么很显然一个简单的办法就是通过引用计数来判断一个对象是否可以被回收.不失一般性,如果一个对象没有任何引用与之关联,则说明该对象基本不太可能在其他地方被使用到,那么这个对象就成为可被回收的对象了.这种方式成为引用计数法. 这种方式的特点是实现简单,而且效率较高,但是它无法解决循环引用的问题,因此在Java中并没有采用这种方式(Python采用的是引用计数法).看下面这段代码: public class Main…
Microsoft 顺序分析和聚类分析算法是由 Microsoft SQL Server Analysis Services 提供的一种顺序分析算法.您可以使用该算法来研究包含可通过下面的路径或“顺序”链接到的事件的数据.该算法通过对相同的顺序进行分组或分类来查找最常见的顺序.下面是一些顺序示例: 用来说明用户在导航或浏览网站时产生的点击路径的数据. 用来说明客户将商品添加到在线零售商的购物车中的顺序的数据. 该算法在许多方面都类似于 Microsoft 聚类分析算法.不过,Microsoft…
数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规则挖掘使用基于有趣性度量标准的FP-Growth算法,序列模式挖掘使用基于有趣性度量标准的GSP算法.若想实现以上优化算法,首先必须了解其基本算法,并编程实现.关键点还是在于理解算法思想,只有懂得了算法思想,对其进行优化操作易如反掌.源代码方面,其实是自己从网络中查找并进行阅读,在理解的基础上进行优…
在数据挖掘的知识模式中,关联规则模式是比较重要的一种.关联规则的概念由Agrawal.Imielinski.Swami 提出,是数据中一种简单但很实用的规则.关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法. 一.关联规则的定义和属性 考察一些涉及许多物品的事务:事务1 中出现了物品甲,事务2 中出现了物品乙,事务3 中则同时出现了物品甲和乙.那么,物品甲和乙在事务中的出现相互之间是否有规律可循呢?在数据库的知识发现中,关联规则就是描述这种在一个事务中物品之间同时出现的规律的知…
转自:http://www.cnblogs.com/fengfenggirl/p/associate_apriori.html 数据挖掘系列 (1) 关联规则挖掘基本概念与 Aprior 算法 我计划整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和 Aprori 算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了…
五.移动平均 多个连续周期的时间序列数据平均值(按相同时间间隔得到的观察值,如每小时一次或每天一次)称为移动平均.之所以称之为移动,是因为随着新的时间序列数据的到来,要不断重新计算这个平均值,由于会删除最早的值同时增加最新的值,这个平均值会相应地“移动”. 例子: java代码: MR方案: 方案1:对于各个规约器键,在RAM种对时间序列数据排序,这个方法存在一个问题:如果没有足够的RAm来完成规约器的排序操作,这种方法就不可行. 方案2:让MRF完成时间序列数据的排序(MR框架的主要特性之一就…
之前介绍的apriori算法中因为存在许多的缺陷,例如进行大量的全表扫描和计算量巨大的自然连接,所以现在几乎已经不再使用 在mahout的算法库中使用的是PFP算法,该算法是FPGrowth算法的分布式运行方式,其内部的算法结构和FPGrowth算法相差并不是十分巨大 所以这里首先介绍在单机内存中运行的FPGrowth算法 还是使用apriori算法的购物车数据作为例子,如下图所示: TID为购物车项的编号,i1-i5为商品的编号 FPGrowth算法的基本思想是,首先扫描整个购物车数据表,计算…
关联规则挖掘算法在生活中的应用处处可见,几乎在各个电子商务网站上都可以看到其应用 举个简单的例子 如当当网,在你浏览一本书的时候,可以在页面中看到一些套餐推荐,本书+有关系的书1+有关系的书2+...+其他物品=多少¥ 而这些套餐就很有可能符合你的胃口,原本只想买一本书的你可能会因为这个推荐而买了整个套餐 这与userCF和itemCF不同的是,前两种是推荐类似的,或者你可能喜欢的商品列表 而关联规则挖掘的是n个商品是不是经常一起被购买,如果是,那个n个商品之中,有一个商品正在被浏览(有被购买的…
上一篇我们讲了关联分析的几个概念,支持度,置信度,提升度.以及如何利用Apriori算法高效地根据物品的支持度找出所有物品的频繁项集. Python --深入浅出Apriori关联分析算法(一) 这次呢,我们会在上次的基础上,讲讲如何分析物品的关联规则得出关联结果,以及给出用apyori这个库运行得出关联结果的代码. 一. 基础知识 上次我们介绍了几个关联分析的概念,支持度,置信度,提升度.这次我们重点回顾一下置信度和提升度: 置信度(Confidence):置信度是指如果购买物品A,有较大可能…
在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支 支持度和置信度 严格地说Apriori和FP-Tree都是寻找频繁项集的算法,频繁项集就是所谓的“支持度”比较高的项集,下面解释一下支持度和置信度的概念. 设事务数据库为: A E F G A F G A B E F G E F G 则{A,F,G}的支持度数为3,支持度为3/4. {F,G}的支持度数为4,支持度为4/4. {A}的支持度数为…
三.FP-tree算法 下面介绍一种使用了与Apriori完全不同的方法来发现频繁项集的算法FP-tree.FP-tree算法在过程中没有像Apriori一样产生候选集,而是采用了更为紧凑的数据结构组织tree, 再直接从这个结构中提取频繁项集.FP-tree算法的过程为: 首先对事务中的每个项计算支持度,丢弃其中非频繁的项,每个项的支持度进行倒序排序.同时对每一条事务中的项也按照倒序进行排序. 根据每条事务中事务项的新顺序,依此插入到一棵以Null为根节点的树中.同时记录下每个事务项的支持度.…
二.Apriori算法 上文说到,大多数关联规则挖掘算法通常采用的策略是分解为两步: 频繁项集产生,其目标是发现满足具有最小支持度阈值的所有项集,称为频繁项集(frequent itemset). 规则产生,其目标是从上一步得到的频繁项集中提取高置信度的规则,称为强规则(strong rule).通常频繁项集的产生所需的计算远大于规则产生的计算花销. 我们发现频繁项集的一个原始方法是确定格结构中每个候选项集的支持度.但是工作量比较大.另外有几种方法可以降低产生频繁项集的计算复杂度. 减少候选项集…
一步步教你轻松学关联规则Apriori算法 (白宁超 2018年10月22日09:51:05) 摘要:先验算法(Apriori Algorithm)是关联规则学习的经典算法之一,常常应用在商业等诸多领域.本文首先介绍什么是Apriori算法,与其相关的基本术语,之后对算法原理进行多方面剖析,其中包括思路.原理.优缺点.流程步骤和应用场景.接着再通过一个实际案例进行语言描述性逐步剖析.至此,读者基本了解该算法思想和过程.紧接着我们进行实验,重点的频繁项集的生成和关联规则的生成.最后我们采用综合实例…
前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文将讲解关联分析领域中最为经典的Apriori算法,并给出具体的代码实现. 关联分析领域的一些概念 1. 频繁项集: 数据集中经常出现在一起的物品的集合.例如 "啤酒和尿布" 2. 关联规则: 指两个物品集之间可能存在很强的关系.例如 "{啤酒} -> {尿布}"…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
第 11 章 使用 Apriori 算法进行关联分析 关联分析 关联分析是一种在大规模数据集中寻找有趣关系的任务. 这些关系可以有两种形式: 频繁项集(frequent item sets): 经常出现在一块的物品的集合. 关联规则(associational rules): 暗示两种物品之间可能存在很强的关系. 相关术语 关联分析(关联规则学习): 从大规模数据集中寻找物品间的隐含关系被称作 关联分析(associati analysis) 或者 关联规则学习(association rule…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…