Probabilistic PCA、Kernel PCA以及t-SNE】的更多相关文章

Probabilistic PCA 在之前的文章PCA与LDA介绍中介绍了PCA的基本原理,这一部分主要在此基础上进行扩展,在PCA中引入概率的元素,具体思路是对每个数据$\vec{x}_i$,假设$\vec{x}_{i} \sim N\left(W{\vec{z}_{i}}, \sigma^{2} I\right)$,其中$\vec{z}_{i}$是一个低维向量,它的先验分布满足$\vec{z}_{i} \sim N(0, I)$,$W$以及所有的$\vec{z}_i$均是要计算的量.$\si…
先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入空间到特征空间 普通PCA算法的输入: 训练数据集\(D={x_1, \dots, x_m}\), \(x_i \in R^n\). 目标降维维度: \(d\) 新的测试数据\(x\) Kernel PCA则需要在输入中加入一个指定的 kernel function \(\kappa\). 我们已经…
Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的投影,在不同的方向上这些数据方差Variance的大小由其特征值(eigenvalue)决定.一般我们会选取最大的几个特征值所在的特征向量(eigenvector),这些方向上的信息丰富,一般认为包含了更多我们所感兴趣的信息.当然,这里面有较强的假设:(1)特征根的大小决定了我们感兴趣信息的多少.即…
PCA与Kernel PCA介绍与对比 1. 理论介绍 PCA:是常用的提取数据的手段,其功能为提取主成分(主要信息),摒弃冗余信息(次要信息),从而得到压缩后的数据,实现维度的下降.其设想通过投影矩阵将高维信息转换到另一个坐标系下,并通过平移将数据均值变为零.PCA认为,在变换过后的数据中,在某一维度上,数据分布的更分散,则认为对数据点分布情况的解释力就更强.故在PCA中,通过方差来衡量数据样本在各个方向上投影的分布情况,进而对有效的低维方向进行选择. KernelPCA:是PCA的一个改进版…
目录 引 主要内容 Takahashi T, Kurita T. Robust De-noising by Kernel PCA[C]. international conference on artificial neural networks, 2002: 739-744. 引 这篇文章是基于对Kernel PCA and De-Noisingin Feature Spaces的一个改进. 针对高斯核: \[k(x,y) = \exp (-\|x-y\|^2/c) \] 我们希望最小化下式(…
目录 引 主要内容 Kernel PCA and De-Noisingin Feature Spaces 引 kernel PCA通过\(k(x,y)\)隐式地将样本由输入空间映射到高维空间\(F\),那么问题来了,如何回来呢,即已知\(\Phi(x) \in F\),如何找到其原像\(x\)呢?可是呢: 这个问题不一定有解,因为从低维空间往高维空间映射往往不是满射: 即便有解,这个也不一定唯一. 但是这个方面的应用还是蛮多的啊,PCA可以通过抛去一些方向(方差小的部分)来去噪声(虽然效果似乎不…
目录 引 主要内容 问题一 问题二 Lu C, Zhang T, Du X, et al. A robust kernel PCA algorithm[C]. international conference on machine learning and cybernetics, 2004: 3084-3087. 引 这篇文章的思想很简单,如何将robust 和 kernel结合起来:找出异常值,将异常值排除,再进行kernel PCA.但是实际上,并非这么容易. 首先,论文抛出了俩个问题:…
目录 引 主要内容 的选择 数值实验 矩形框 spiral 代码 Hoffmann H. Kernel PCA for novelty detection[J]. Pattern Recognition, 2007, 40(3): 863-874. 引 Novelty Detection: 给我的感觉有点像是奇异值检测,但是又不对,训练样本应该默认是好的样本.这个检测应该就是圈个范围,告诉我们在这个范围里的数据是这个类的,外面的不是这个类的,所以论文里也称之为:one-class classif…
目录 引 主要内容 关于缺失数据的导数 附录 极大似然估计 代码 Sanguinetti G, Lawrence N D. Missing data in kernel PCA[J]. european conference on machine learning, 2006: 751-758. 引 普通的kernel PCA是通过\(K\),其中\(K_{ij} = \Phi^T(y_i) \Phi(y_j)\)来获得,很显然,如果数据有缺失,就不能直接进行kernel PCA了,这篇文章所研…
1.PCA简介 遭遇维度危机的时候,进行特征选择有两种方法,即特征选择和特征抽取.特征选择即经过某种法则直接扔掉某些特征,特征抽取即利用映射的方法,将高维度的样本映射至低维度.PCA(或者K-L变换),即Principal Component Analysis是特征抽取的主要方法之一.     PCA适用于非监督的学习的不带标签(带标签的样本,往往用LDA降维)的样本降维,特别是小样本问题.广义认为,这类样本属性之间的相关性很大,通过映射,将高维样本向量映射成属性不相关的样本向量.PCA的步骤是…
核化这个概念在很多机器学习方法中都有应用,如SVM,PCA等.在此结合sklearn中的KPCA说说核函数具体怎么来用. KPCA和PCA都是用来做无监督数据处理的,但是有一点不一样.PCA是降维,把m维的数据降至k维.KPCA恰恰相反,它是把m维的数据升至k维.但是他们共同的目标都是让数据在目标维度中(线性)可分,即PCA的最大可分性. 在sklearn中,kpca和pca的使用基本一致,接口都是一样的.kpca需要指定核函数,不然默认线性核. 首先我们用下面的代码生成一组数据. import…
In the present work, we propose a framework for kernel-based 2D feature extraction algorithms tailored to face recognition .     extending 2D-PCA/LDA in the following two aspects: (1)kernel technique is incorporated to capture the higher order statis…
Shogun网站上的关于主流机器学习工具包的比较: http://www.shogun-toolbox.org/page/features/   created last updated main language main focus shogun 1999 10-2013 C++ General Purpose ML Package with particular focus on large scale learning; Kernel Methods; Interfaces to var…
从宏观方面,机器学习可以从不同角度来分类 是否在人类的干预/监督下训练.(supervised,unsupervised,semisupervised 以及 Reinforcement Learning) 是否可以增量学习 (在线学习,批量学习) 是否是用新数据和已知数据比较,还是在训练数据中发现一些规律build出一个预测模型(instance-based ,model-based learning). 以上分类并非互相排斥.这一节我们介绍监督/无监督学习. Supervised/Unsupe…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维 数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助 读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读…
如图1所示,最小p乘法求得是,而真实值到拟合曲线的距离为.那么,对应的是什么样的数据分析呢? 图1 最小p乘法的使用的误差是.真实值到拟合曲线的距离为 假如存在拟合曲线,设直线方程为.真实值到该曲线的投影点为.p=2时,则两点之间的距离为                                                                                                                  (37)            …
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计算量,耗费时间和资源.所以我们通常会对数据重新变换一下,再跑模型.数据变换的目的不仅仅是降维,还可以消除特征之间的相关性,并发现一些潜在的特征变量. 降维算法由很多,比如PCA…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA——主成分分析 简介 PCA全称Principal Component Analysis,即主成分分析,是一种常用的数据降维方法.它可以通过线性变换将原始数据变换为一组各维度线性无关的表示,以此来提取数据的主要线性分量. z=wTx  其中,z为低维矩阵,x为高维矩阵,w为两者之间的映射关系.假如我们有二维数据(原始数据有两个特征轴——特征1和特征2)如下图所示,样本点分布为斜45°的蓝色椭圆区域. PCA算法认为斜45°为主要线性分量,与之正交的虚线是次要线性分量(应当舍去以达到降维的目…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA的数学原理(非常值得阅读)!!!!   PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,…
  PCA的数学原理(转) 1 年前 PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个…
PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
理论參考文献:但此文没有代码实现.这里自己实现一下,让理解更为深刻 问题:如果在IR中我们建立的文档-词项矩阵中,有两个词项为"learn"和"study",在传统的向量空间模型中,觉得两者独立. 然而从语义的角度来讲.两者是相似的.并且两者出现频率也类似,是不是能够合成为一个特征呢? <模型选择和规则化>谈到的特征选择的问题.就是要剔除的特征主要是和类标签无关的特征.比方"学生的名字"就和他的"成绩"无关,使用的…
PCA 实现: 参考博客:https://blog.csdn.net/u013719780/article/details/78352262 from __future__ import print_function from sklearn import datasets import matplotlib.pyplot as plt import matplotlib.cm as cmx import matplotlib.colors as colors import numpy as n…