目录 引 主要内容 问题一 问题二 Lu C, Zhang T, Du X, et al. A robust kernel PCA algorithm[C]. international conference on machine learning and cybernetics, 2004: 3084-3087. 引 这篇文章的思想很简单,如何将robust 和 kernel结合起来:找出异常值,将异常值排除,再进行kernel PCA.但是实际上,并非这么容易. 首先,论文抛出了俩个问题:…
目录 引 主要内容 关于缺失数据的导数 附录 极大似然估计 代码 Sanguinetti G, Lawrence N D. Missing data in kernel PCA[J]. european conference on machine learning, 2006: 751-758. 引 普通的kernel PCA是通过\(K\),其中\(K_{ij} = \Phi^T(y_i) \Phi(y_j)\)来获得,很显然,如果数据有缺失,就不能直接进行kernel PCA了,这篇文章所研…
In the present work, we propose a framework for kernel-based 2D feature extraction algorithms tailored to face recognition . extending 2D-PCA/LDA in the following two aspects: (1)kernel technique is incorporated to capture the higher order statis…
Shogun网站上的关于主流机器学习工具包的比较: http://www.shogun-toolbox.org/page/features/ created last updated main language main focus shogun 1999 10-2013 C++ General Purpose ML Package with particular focus on large scale learning; Kernel Methods; Interfaces to var…
PCA 实现: 参考博客:https://blog.csdn.net/u013719780/article/details/78352262 from __future__ import print_function from sklearn import datasets import matplotlib.pyplot as plt import matplotlib.cm as cmx import matplotlib.colors as colors import numpy as n…