推荐系统实践 0x0f AutoRec】的更多相关文章

从这一篇开始,我们开始学习深度学习推荐模型,与传统的机器学习相比,深度学习模型的表达能力更强,并且更能够挖掘出数据中潜藏的模式.另外.深度学习模型结构也非常灵活,能够根据业务场景和数据结构进行调整.还是原来的样子,我会按照原理以及代码实现,再就是一些优缺点进行逐一介绍. AutoRec AutoRec可以说是最小的深度学习推荐系统了,它是一种单隐层神经网络推荐模型,将自编码器与协同过滤相结合.那么什么是自编码器呢?自编码器可以看做是一种压缩维度的工具,无论是图像.音频.还是文本,都能够通过自编码…
利用用户行为数据 简介: 用户在网站上最简单存在形式就是日志. 原始日志(raw log)------>会话日志(session log)-->展示日志或点击日志 用户行一般分为两种: 1显性反馈:包括用户明确表示对物品喜好的行为(数据量小) 2隐形反馈:网页浏览等(数据量大) 用户行为的统一标准如下: 协同滤波与实验设计: 本文参考<推荐系统实践>这本书,但细节和书中略有不同,因为个人把书中代码组合到一起有些小问题,所以自己小修改了一番,可以运行,与大家分享. 实验数据集: 采用…
挺实在 今天为大家分享下京东电商推荐系统实践方面的经验,主要包括: 简介 排序模块 实时更新 召回和首轮排序 实验平台 简介 说到推荐系统,最经典的就是协同过滤,上图是一个协同过滤的例子.协同过滤主要分为俩种:user-based 基于用户的协同过滤和 item-based 基于商品的协调过滤. 但是,现在绝大多数推荐系统都不会直接使用协同过滤来做推荐.目前主要用的是 learningtorank 框架. 这里,是推荐系统的框架,整个推荐系统可以分为两部分,在线部分和离线部分. 在线部分主要负责…
基于邻域的算法(2) 上一篇我们讲了基于用户的协同过滤算法,基本流程就是寻找与目标用户兴趣相似的用户,按照他们对物品喜好的对目标用户进行推荐,其中哪些相似用户的评分要带上目标用户与相似用户的相似度作为权重来计算.但是,基于用户的协同过滤算法存在一些弊端,如计算用户兴趣相似度矩阵将越来越困难,其运算时间复杂度和空间复杂度的增长和用户数的增长近似于平方关系,另外也很难对推荐结果进行解释.那么,这一篇我们继续来了解一下基于物品的协同过滤算法. 基于物品的协同过滤算法(ItemCF) 基于物品的协同过滤…
前言 推荐系统实践那本书基本上就更新到上一篇了,之后的内容会把各个算法拿来当专题进行讲解.在这一篇,我们将会介绍矩阵分解这一方法.一般来说,协同过滤算法(基于用户.基于物品)会有一个比较严重的问题,那就是头部效应.热门的物品容易跟大量的物品产生相似性,而尾部的物品由于特征向量系数很少产生与其他物品的相似性,也就很少被推荐. 矩阵分解算法 为了解决这个问题,矩阵分解算法在协同过滤算法中共现矩阵的基础上加入了隐向量的概念,也是为了增强模型处理稀疏矩阵的能力.物品和用户的隐向量是通过分解协同过滤的共现…
用户行为数据的二分图表示 用户的购买行为很容易可以用二分图(二部图)来表示.并且利用图的算法进行推荐.基于邻域的模型也可以成为基于图的模型,因为基于邻域的模型都是基于图的模型的简单情况.我们可以用二元组\((u,i)\)来表示用户\(u\)对物品\(i\)有过购买行为,这样的话数据集可以用一个二分图来表示.我这里尝试画一个二分图(有点丑,不要介意哈): graph LR A(A) -->a[a] A(A) -->b[b] A(A) -->d[d] B(B) -->b[b] B(B)…
推荐系统是根据用户的行为.兴趣等特征,将用户感兴趣的信息.产品等推荐给用户的系统,它的出现主要是为了解决信息过载和用户无明确需求的问题,根据划分标准的不同,又分很多种类别: 根据目标用户的不同,可划分为基于大众行为的推荐引擎和个性化推荐引擎 根据数据之间的相关性,可划分为基于人口统计学的推荐和基于内容的推荐 ...... 通常,我们在讨论推荐系统时主要是针对个性化推荐系统,因为它才是更加智能的信息发现过程.在个性化推荐系统中,协同过滤算法是目前应用最成功也是最普遍的算法,主要包括两大类,基于用户…
新版的Neo4j图形算法库(algo)中增加了个性化Pagerank的支持,我一直想找个有意思的应用来验证一下此算法效果.最近我看Peter Lofgren的一篇论文<高效个性化Pagerank算法>(Efficient Algorithms for Personalized PageRank)(https://arxiv.org/pdf/1512.04633.pdf),在论文中,有一个比较有趣的示例: 我们想在论文引用网络中进行个性化搜索的尝试,但是要怎样设置个性化PageRank的参数,才…
推荐数据集MovieLens及评测 数据集简介 MoiveLens是GroupLens Research收集并发布的关于电影评分的数据集,规模也比较大,为了让我们的实验快速有效的进行,我们选取了发布于2003年2月的 MovieLens 1M,这个数据集包含6000个用户对4000个电影的一百万个评分.这个数据集经常用来做推荐系统,机器学习算法的测试数据集.尤其在推荐系统领域,很多著名论文都是基于这个数据集的.数据集下载地址. 数据集格式 评分数据 在rating.dat文件当中,里面主要保存了…
基于邻域的算法(1) 基于邻域的算法主要分为两类,一类是基于用户的协同过滤算法,另一类是基于物品的协同过滤算法.我们首先介绍基于用户的协同过滤算法. 基于用户的协同过滤算法(UserCF) 基于用户的协同过滤算法是最古老的算法了,它标志着推荐系统的诞生.当一个用户甲需要个性化推荐时,首先找到那些跟他兴趣相似的用户,然后把那些用户喜欢的,甲没有听说过的物品推荐给用户甲,那么这种方式就叫做基于用户的协同过滤算法. 那么,这个算法包含两个步骤: 找到和目标用户兴趣相似的用户集合. 找到这个集合中的用户…
什么是冷启动问题 如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题.冷启动问题主要分为三类: 用户冷启动 物品冷启动 系统冷启动 下面我们将分别介绍这三种冷启动情况. 用户冷启动 用户冷启动主要解决如何给新用户做个性化推荐的问题.当新用户到来时,我们没有他的行为数据,所以也无法根据他的历史行为预测其兴趣,从而无法借此给他做个性化推荐.那么,我们可以利用用户的注册信息来解决冷启动问题.用户信息通常分为三种: 人口统计学信息 主要是用户的年…
前一篇文章我们介绍了LR->FM->FFM的整个演化过程,我们也知道,效果最好的FFM,它的计算复杂度已经达到了令人发指的\(n^2k\).其实就是这样,希望提高特征交叉的维度来弥补稀疏特征,不可避免的带来组合爆炸和计算复杂度过高的问题.这一篇,我们介绍一下Facebook提出的GBDT+LR的组合来解决特征组合和筛选的问题. 结构 整体的思路就是用GBDT构建特征工程,使用LR预估CTR这两步.由于这两步是独立的,所以不存在将LR的梯度回传到GBDT这类复杂问题.关于GBDT,就需要另外开一…
这一篇,我们将介绍微软BING AD团队提出的Deep Crossing模型,用来解决大规模特征组合问题的模型,这些特征可以是稠密的,也可以是稀疏的,从而避免了人工进行特征组合,并使用了当年提出的残差神经网络.这个模型也算是深度学习在推荐系统的完整应用了:完整的解决了特征工程.稀疏向量稠密化.多层神经网络进行优化等一些列深度学习的目标应用. 特征 微软在广告场景中所使用的特征如下面所示: 查询. 用户在搜索框中输入的文本字符串 关键字 与产品相关的文本字符串,广告主添加的其产品描述词 标题 赞助…
前言 这一篇文章我们来谈一下2017年新加坡国立大学提出的基于深度学习的系统过滤模型NeuralCF.我们在之前讲过矩阵分解技术,将协同过滤中的共现矩阵分解成用户向量矩阵以及物品向量矩阵.那么Embedding的思路也是一样的,只不过不是通过矩阵分解的形式,而是通过多层神经网络使用Embedding构造用户隐向量以及物品隐向量.用户隐向量与物品隐向量的內积,就是用户对物品的评分.这个內积的操作,同样可以使用神经网络层来实现,也就是前一篇文章所用的Scoring层,得到所谓的"相似度",…
做过深度学习的小伙伴,大家应该多多少少都听说过Embedding,这么火的Embedding到底是什么呢?这篇文章就用来介绍Embedding.另外,基于深度学习的推荐系统方法或者论文还没有结束,我打算穿插进行讲解,毕竟,深度学习出来的推荐框架的算法实在是太相像了,很难有大的不同.所以,这一篇就聊聊Embedding. 初识Embedding Embedding又被成为向量化,或者向量的映射.Embedding(嵌入)也是拓扑学里面的词,在深度学习领域经常和Manifold(流形)搭配使用.在之…
逻辑回归(LR) 在介绍FM系列之前,我想首先简单介绍一下逻辑回归.通常来说,逻辑回归模型能够综合利用更多的信息,如用户.物品.上下文等多种不同的特征,生成更为全面的结果.另外,逻辑回归将推荐问题看成一个分类问题.通过预测正样本的概率对物品进行排序,这里的正样本可以是用户观看了某个视频,也可以是用户点击了某个商品,或者用户播放了某个音乐等等.逻辑回归模型将推荐问题转换成了CTR(click throught rate)预估的问题. 步骤 一般来说,逻辑回归模型的推荐过程分成以下几步: 将用户年龄…
在之前介绍的几个模型中,存在这些问题: LR不能捕捉非线性,只能进行一次的回归预测 GBDT+LR虽然能够产生非线性特征组合,但是树模型不适用于超高维稀疏数据 FM利用二阶信息来产生变量之间的相关性,但是无法适应高阶组合特征,高阶组合容易爆炸 那么,下面介绍的LS-PLM模型一定程度上缓解了这个问题. LS-PLM LS-PLM是阿里巴巴曾经主流的推荐模型,这一篇文章就来介绍一下LS-PLM模型的内容.LS-PLM可以看做是对LR模型的自然推广,它采用的是分而治之的策略.先对样本分片,然后样本分…
Word2Vec是谷歌团队提出的,让词向量在自然语言处理当中再度流行,并且推广到了广告.搜索.推荐等各个领域当中.Word2Vec顾名思义,就是一个生成对词的向量表达的模型.假设我们使用一组句子组成的语料库作为训练数据,其中一句长度为\(T\)的句子为\(w_1,w_2,...,w_T\),假设每个词都与最相邻的词关系最为密切.那么这种密切的关系可以分为两种: CBOW. 每个词都是由相邻的词决定的.cbow输入是某一个特征词的上下文相关的词对应的词向量,而输出就是这特定的一个词的词向量,即先验…
转自:用户推荐系统_python 代码-豆瓣书籍:项亮的<推荐系统实践> import random import math class UserBasedCF: def __init__(self,train = None,test = None): self.trainfile = train self.testfile = test self.readData() def readData(self,train = None,test = None): self.trainfile =…
本文主要是基于<推荐系统实践>这本书的读书笔记,还没有实践这些算法. LFM算法是属于隐含语义模型的算法,不同于基于邻域的推荐算法. 隐含语义模型有:LFM,LDA,Topic Model 这本书里介绍的LFM算法.书中内容介绍的很详细,不过我也是看了一天才看明白的. 开始一直没想明白,隐类的类别是咋来的,后来仔细读才发现是一个设置的参数. 下面开始进入正文: 对于基于邻域的机器学习算法来说,如果要给一个用户推荐商品,那么有两种方式. 一种是基于物品的,另一种是基于用户的. 基于物品的是,从该…
http://blog.csdn.net/pipisorry/article/details/49205589 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System {博客内容:推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM, latent factor model)推荐.这篇博客只…
本文由云+社区发表 作者:腾讯技术工程 导语:最近几年来,深度学习在推荐系统领域中取得了不少成果,相比传统的推荐方法,深度学习有着自己独到的优势.我们团队在QQ看点的图文推荐中也尝试了一些深度学习方法,积累了一些经验.本文主要介绍了一种用于推荐系统召回模块的深度学习方法,其出处是Google在2016年发表于RecSys的一篇用于YouTube视频推荐的论文.我们在该论文的基础上做了一些修改,并做了线上AB测试,与传统的协同召回做对比,点击率等指标提升明显. 为了系统的完整性,在介绍主模型前,本…
最近在学习推荐系统(Recommender System),跟大部分人一样,我也是从<推荐系统实践>学起,同时也想跟学机器学习模型时一样使用几个开源的python库玩玩.于是找到了surprise,挺新的,代码没有sklearn那么臃肿,我能看的下去,于是就开始了自己不断的挖坑. 这篇文章介绍基于SVD的矩阵分解推荐预测模型.一开始我还挺纳闷,SVD不是降维的方法嘛?为什么可以用到推荐系统呢?研究后,实则异曲同工. 有关SVD推导可以看这篇文章:降维方法PCA与SVD的联系与区别 了解推荐系统…
  一.准确率(Precision)和召回率(Recall)  (令R(u)是根据用户在训练集上的行为给用户作出的推荐列表,而T(u)是用户在测试集上的行为列表.) 对用户u推荐N个物品(记为R(u)),令用户u在测试集上喜欢的物品集合为T(u),然后可以通过准确率/召回率评测推荐算法的精度: 准确率描述最终的推荐列表中有多少比例是发生过的用户—物品评分记录: 召回率描述有多少比例的用户—物品评分记录包含在最终的推荐列表中.   准确率和召回率计算方法的Python代码如下: def Recal…
转自http://blog.csdn.net/sinat_33741547/article/details/53002524 一 基本概念 基于图的模型是推荐系统中相当重要的一种方法,以下内容的基本思想是将用户行为数据表示为一系列的二元组,每一个二元组(u,i)代表用户u对物品i产生过行为,这样便可以将这个数据集表示为一个二分图. 假设我们有以下的数据集,只考虑用户喜不喜欢该物品而不考虑用户对物品的喜欢程度, 其中用户user=[A,B,C],物品item=[a,b,c],用户和物品有以下的关系…
概要: 随着电子商务的高速发展和普及应用,个性化推荐的推荐系统已成为一个重要研究领域. 个性化推荐算法是推荐系统中最核心的技术,在很大程度上决定了电子商务推荐系统性能的优劣,决定着是否能够推荐用户真正感兴趣的信息,而面对用户的不断提升的需求,推荐系统不仅需要正确的推荐,还要实时地根据用户的行为进行分析并推荐最新的 结果. 实时推荐系统的任务就是为每个用户,不断地.精准地推送个性化的服务,甚至到达让用户体会到推荐系统比他们更了解自己的感觉. 本文主要研究的是基于模型的协同过滤算法-ALS以及实时推…
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 数据 推荐算法 协同过滤 基于流行度的推荐 基于用户标签相似度的推荐 评价指标 算法对比 推荐10本书籍 推荐20本书籍 推荐解释 探讨 结论 本文记录了我对owllook.net这一网络小说搜索引擎的推荐系统的分析与设计过程.这个项目是开源项目,地址在owllook repo,目前已经积累了一定的数据量,需要一个靠谱的推荐系统.注意我用到的数据是内部数据,并没有开源. 本文使用…
Skip to content PersonalOpen sourceBusinessExplore Sign upSign in PricingBlogSupport   This repository     Watch169 Star1,182 Fork389 jobbole/awesome-programming-books CodeIssues 9Pull requests 2Projects 0PulseGraphs 经典编程书籍大全,涵盖:计算机系统与网络.系统架构.算法与数据结构…
转载自:https://www.douban.com/note/204399134/ 推荐数据的处理是大规模的,在集群环境下一次要处理的数据可能是数GB,所以Mahout针对推荐数据进行了优化. Preference 在Mahout中,用户的喜好被抽象为一个Preference,包含了userId,itemId和偏好值(user对item的偏好).Preference是一个接口,它有一个通用的实现是GenericPreference. Preference 但因为用户的喜好数据是大规模的,我们通…
PHP程序员进阶学习书籍参考指南 @heiyeluren lastmodify: 2016/2/18     [初阶](基础知识及入门)   01. <PHP与MySQL程序设计(第4版)>  http://item.jd.com/10701892.html 02. <深入浅出MySQL 数据库开发 优化与管理维护 第2版> http://item.jd.com/11381295.html  *浅读 03. <实战Nginx:取代Apache的高性能Web服务器> ht…