题意:有N个潜在的bug和m个补丁,每个补丁用长为N的字符串表示.首先输入bug数目以及补丁数目.然后就是对M个补丁的描述,共有M行.每行首先是一个整数,表明打该补丁所需要的时间.然后是两个字符串,第一个字符串是对软件的描述,只有软件处于该状态下才能打该补丁该字符串的每一个位置代表bug状态("-"代表该位置没bug,"+"代表该位置有bug,"0"表示该位置无论有没有bug都可打补丁).然后第二个字符串是对打上补丁后软件状态的描述"-…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=599 题意: 补丁在修正bug时,有时也会引入新的bug.假定有n(n≤20)个潜在bug和m(m≤100)个补丁,每个补丁用两个长度为n的字符串表示,其中字符串的每个位置表示一个bug.第一个串表示打补丁之前的状态(“-”表示该bug必须不存在,“+”表示必须存在,0表示无所谓),…
题意:有n个bug,有m个补丁,每个补丁有一定的要求(比如某个bug必须存在,某个必须不存在,某些无所谓等等),打完出来后bug还可能变多了呢.但是打补丁是需要时间的,每个补丁耗时不同,那么问题来了:要打多久才能无bug?(同1补丁可重复打) 分析: n<=20,那么用位来表示bug的话有220=100万多一点.不用建图了,图实在太大了,用位图又不好玩.那么直接用隐式图搜索(在任意点,只要满足转移条件,任何状态都能转). 但是有没有可能每个状态都要搜1次啊?那可能是100万*100万啊,这样出题…
隐式的图搜索,存不下边,所以只有枚举转移就行了,因为bug的存在状态可以用二进制表示,转移的时候判断合法可以用位运算优化, 二进制pre[i][0]表示可以出现的bug,那么u&pre[i][0] == u就表示u是可以出现的bug集合的子集, pre[i][1]表示必须出现的bug,那么u|pre[i][i] != u表示把必须出现的bug添加到u中,u中bug增加表面bug不全在u中,这是不合法的. 正权最短路就dijkstra,用spfa以前某题狂T有阴影.被输出格式坑得不要不要的,如果是…
这个题目巧妙之处在于用二进制的每个位1,0分别表示bug的有无,以及实施补丁对相应bug的要求以及实施后的对bug的影响. 软件bug的状态:1表示相应bug仍然存在,0表示已经修复.这样可以将软件的状态用一个整数表示,例如1100(12)表示第1,2个bug存在,后面两个已经修复. 那么,对于n个bug 的软件,起点src = (1<<n)-1表示软件初始状态 111....111,终点sink = 0表示软件已经修复. 实施补丁的条件: +-0 表示实施该补丁需要第1个bug存在,第2个b…
题意:首先给出n和m,表示有n个bug和m个补丁.一开始存在n个bug,用1表示一个bug存在0表示不存在,所以一开始就是n个1,我们的目的是要消除所有的bug, 所以目标状态就是n个0.对于每个补丁,会给出使用这个补丁的时间,另外会给出两个长度为n的字符串,第一个字符串表示这个补丁适用于什么情况下的bug, 第二个字符串表示使用完这个补丁后原来的bug会变成怎么样.先说第一个字符串,s[i]=’0’,表示第i个bug存在与否都无所谓:s[i]=’+’, 表示第i个bug一定要存在:s[i]=’…
紫书365 题目大意:给你n个全都是bug的东西,然后每次可以修复,给你修复前后的状态,问最后如果能把bug全都修复,最少需要多少时间. 思路:从最初状态开始,然后枚举bug即可. 表示priority里面的bool operator和单纯的sort的定义的大小于号是不一样的啊,如果你想用sort来计算struct从小到大的的话是这样的 struct Node{ int bugs, dist; bool operator < (const Node &a) const{ return dis…
这道题用到了很多知识点, 是一道好题目.      第一用了状态压缩, 因为这里最多只有20位, 所以可以用二进制来储存状态 (要对数据范围敏感), 然后 涉及到了一些位运算.     第二这里是隐式图搜索, 和之前有一道bfs倒水的有点像, 就是题目和图论没有半毛钱关系, 但是却可以自己建 图来做, 把状态看作点, 把状态转移看作边.    第三因为求最短时间, 所以用了堆优化dijsktra. #include<cstdio> #include<queue> #define R…
Fans and Gems Input: Standard Input Output: Standard Output Tomy's fond of a game called 'Fans and Gems' (also known as Gravnic). In the game, he can use fans to collect gems, but he's satisfied with his play only if all the gems are collected with m…
 L-system  A D0L (Deterministic Lindenmayer system without interaction) system consists of a finite set  of symbols (the alphabet), a finite set P of productions and a starting string  . The productions in P are of the form  , where  and  (u is calle…