参考文献: 1.python 皮尔森相关系数 https://www.cnblogs.com/lxnz/p/7098954.html 2.统计学之三大相关性系数(pearson.spearman.kendall) http://blog.sina.com.cn/s/blog_69e75efd0102wmd2.html 皮尔森系数 重点关注第一个等号后面的公式,最后面的是推导计算,暂时不用管它们.看到没有,两个变量(X, Y)的皮尔森相关性系数(ρX,Y)等于它们之间的协方差cov(X,Y)除以它…
目录 person correlation coefficient(皮尔森相关性系数-r) spearman correlation coefficient(斯皮尔曼相关性系数-p) kendall correlation coefficient(肯德尔相关性系数-k) R语言计算correlation 在文献以及各种报告中,我们可以看到描述数据之间的相关性:pearson correlation,spearman correlation,kendall correlation.它们分别是什么呢…
[TOC] Spark计算模型 Spark程序模型 一个经典的示例模型 SparkContext中的textFile函数从HDFS读取日志文件,输出变量file var file = sc.textFile("hdfs://***") RDD中的filter函数过滤带有'ERROR'的行,输出errors(一个RDD) var errors = file.filter(line=>line.contains("ERROR")) RDD中的count函数返回&q…
spark 计算两个dataframe 的差集.交集.合集,只选择某一列来对比比较好.新建两个 dataframe : import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SQLContext def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("TTyb").setMaster(…
[原创 Hadoop&Spark 动手实践 7]Spark计算引擎剖析与动手实践 目标: 1. 理解Spark计算引擎的理论知识 2. 动手实践更深入的理解Spark计算引擎的细节 3. 通过编程案例加深理解…
----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark on Yarn运行流程 2.5 WordCount执行原理 3.Spark计算引擎原理 3.1 Spark内部原理 3.2 生成逻辑执行图 3.3 生成物理执行图 4.Spark Shuffle解析 4.1 Shuffle 简史 4.2  Spark Shuffle ·Shuffle Write…
首先在Linux环境安装spark: 可以从如下地址下载最新版本的spark: https://spark.apache.org/downloads.html 这个下载下来后是个tgz的压缩包,解压后spark环境就安装好了 或者从github上下载: #git clone git://github.com/apache/spark.git 安装好后,进入到spark的根目录,就可以通过spark提供的一些脚本命令行来用spark进行计算了,一个例子 ./bin/spark-submit exa…
源代码不记得是哪里获取的了,侵删.此处博客仅作为自己笔记学习. def multipl(a,b): sumofab=0.0 for i in range(len(a)): temp=a[i]*b[i] sumofab+=temp return sumofab def corrcoef(x,y): n=len(x) #求和 sum1=sum(x) sum2=sum(y) #求乘积之和 sumofxy=multipl(x,y) #求平方和 sumofx2 = sum([pow(i,2) for i…
Pandas统计计算和描述 示例代码: import numpy as np import pandas as pd df_obj = pd.DataFrame(np.random.randn(5,4), columns = ['a', 'b', 'c', 'd']) print(df_obj) 运行结果: a b c d 0 1.469682 1.948965 1.373124 -0.564129 1 -1.466670 -0.494591 0.467787 -2.007771 2 1.368…
相关性系数 https://baike.baidu.com/item/相关系数/3109424?fr=aladdin 缺点 需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象.因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1:当n较大时,相关系数的绝对值容易偏小.特别是当n=2时,相关系数的绝对值总为1.因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的.     D(X+Y)=D(X)…