KL变换】的更多相关文章

上一讲说到,各个特征(各个分量)对分类来说,其重要性当然是不同的. 舍去不重要的分量,这就是降维. 聚类变换觉得:重要的分量就是能让变换后类内距离小的分量. 类内距离小,意味着抱团抱得紧. 可是,抱团抱得紧,真的就一定easy分类么? 如图1所看到的,依据聚类变换的原则,我们要留下方差小的分量,把方差大(波动大)的分量丢掉,所以两个椭圆都要向y轴投影,这样悲剧了,两个重叠在一起,根本分不开了.而还有一种情况却能够这么做,把方差大的分量丢掉,于是向x轴投影,非常顺利就能分开了.因此,聚类变换并非每…
目录 1. 概述 2. K-L变换方法和原理推导 2.1. 向量分解 2.2. 向量估计及其误差 2.3. 寻找最小误差对应的正交向量系 3. K-L变换高效率的本质 4. PCA在编.解码应用上的进一步推导 4.1. 编.解码函数的定义 4.2. 寻找最优编码\(\boldsymbol c^*\) 4.2.1. 构造.简化优化函数 4.2.2. 最优编码函数 4.3. 寻找最优编码矩阵\(\boldsymbol D^*\) 1. 概述 全称:Discrete Karhunen–Loève Tr…
主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数 量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换.PCA方法最著名的应用应该是在人脸识别中特征提取及数据维,我们知 道输入200*200大小的人脸图像,单单提取它的灰度值作为原始特征,则这个原始特征将达到40000维,这给后面分类器的处理将带来极大的难度.著名 的人脸识别Eigenface算法就是采用PCA算法,用一个低维子空间描述人脸图像,同时用保存了识别所需要的信息.下面先介绍下PCA…
一些推导的笔记 上面分解成无穷维,大多数时候都不是的吧... 这里的d有限维,应该是指相对小于上面的分解的维度的某个数 参考资料 参考资料,上面是从最小化损失的角度,利用拉格朗日对偶的优化方法求解 pca的另一种最大化方差的解释 kl变换和pca区别…
一.K-L变换 说PCA的话,必须先介绍一下K-L变换了. K-L变换是Karhunen-Loeve变换的简称,是一种特殊的正交变换.它是建立在统计特性基础上的一种变换,有的文献也称其为霍特林(Hotelling)变换,因为他在1933年最先给出将离散信号变换成一串不相关系数的方法.K-L变换的突出优点是它能去相关性,而且是均方误差(Mean Square Error,MSE)意义下的最佳变换. 下面就简单的介绍一下K-L变换了. 设,随机向量X ∈Rn(n阶列向量),它的均值向量为mX,则其协…
K-L变换( Karhunen-Loeve Transform)是建立在统计特性基础上的一种变换,有的文献也称为霍特林(Hotelling)变换,因他在1933年最先给出将离散信号变换成一串不相关系数的方法.K-L变换的突出优点是去相关性好,是均方误差(MSE,Mean Square Error)意义下的最佳变换,它在数据压缩技术中占有重要地位. K-L(Karhunen-Loeve)变换形式 设X=(X1,X2,…,XN)T为N维随机矢量,mX=E(X)和CX=E{(X-mX)(X-mX)T}…
1 问题的提出 2 K-L变换的原理 3 K-L变换的计算过程 4 K-L变换的性质 5 K-L变换的深入讨论 6 K-L变换的应用…
全称:Karhunen-Loeve变换(卡洛南-洛伊变换) 前面讨论的特征选择是在一定准则下,从n个特征中选出k个来反映原有模式. 这种简单删掉某n-k个特征的做法并不十分理想,因为一般来说,原来的n个数据各自在不同程度上反映了识别对象的某些特征,简单地删去某些特征可能会丢失较多的有用信息. 如果将原来的特征做正交变换,获得的每个数据都是原来n个数据的线性组合,然后从新的数据中选出少数几个,使其尽可能多地反映各类模式之间的差异,而这些特征间又尽可能相互独立,则比单纯的选择方法更灵活.更有效. K…
1.算法功能简介   主成分变换(Principal Component Analysis,PCA)又称K-L(Karhunen-Loeve)变换或霍特林(Hotelling)变换,是基于变量之间的相关关系,在尽量不丢失信息前提下的一种线性变换的方法,主要用于数据压缩和信息增强. 主成分正变换,一般意义的K-L变换就是指正变换,该过程通过对图像进行统计,在波段协方差矩阵的基础上计算特征值,构造主成分.根据主成分与特征值的关系,可以选择少数的主成分作为输出结果. 主成分逆变换,如果在正变换中选择的…
MATLAB基础知识 l  Imread:  读取图片信息: l  axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax]) 设置 x.y 和 z 轴范围以及颜色缩放范围(请参阅 caxis).v = axis 返回包含 x.y 和 z 轴缩放因子的行矢量.v 具有 4 或 6 个分量,具体分别取决于当前坐标轴是二维还是三维.返回值是当前坐标轴的 XLim.Ylim 和 ZLim 属性.   基于 x.y 和 z 数据的最小值和最大值,ax…