[题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻的. 我们可以发现,在100000的范围内,这个矩阵最多只有18行,11列. 那么这个矩阵的取数字的方案数直接状压DP即可.f[i][j]表示第i行,状态为j的方案数,转移就是f[i][j]=sigma(f[i-1][k]) ,条件是(j&k==0且k&(k>>1)==0) 但是这…
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ 然后因为有些数是无关联的就不会在一个表格中($eg:1,5$.所以要建多个表格,最后乘法原理就好,$over$ #include<bits/stdc++.h> using namespace std; #define il inline #define gc getchar() #define…
2734: [HNOI2012]集合选数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 321[Submit][Status] Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何…
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中.同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足上述约束条件的子集的个数(只需输出对 1,000,000,001 取模的结果),现在这个问题就 交给你了. 分析: 我…
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中. 同学们不喜欢这种具有枚举性 质的题目,于是把它变成了以下问题:对于任意一个正整数, 如何求出\({1,2,3...n}\) 的满足上述约束条件的子集的个数(只需输出对 \(10^{9}+1\) 取模的结果),现在这个问题就交给你了. 输入格式: 只有一行,其中有一个正整数 \(n\) 30…
2734: [HNOI2012]集合选数 链接 分析: 转化一下题意. 1 3 9 27... 2 6 18 54... 4 12 36 108... 8 24 72 216... ... 写成这样的矩阵阵后,那么题意就是不能选相邻的点,求方案数.可以知道行不超过18,列不超过11,然后状压dp即可. 发现5在这个矩阵中没有出现,于是可以在构造a[1][1]=5的矩阵,利用乘法原理求出相乘.同样地,构成a[1][1]为没有出现的数的矩阵,相乘. 代码: #include<cstdio> #in…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2734 考虑$N=4$的情况: \begin{bmatrix} 1&3 &X \\ 2&X &X \\ 4&X &X \end{bmatrix} 其实就是吧最小值丢在了矩阵中${(0,0)}$的位置上,对于矩阵中的任意位置令${f[i][j]=f[i][j-1]*3}$,${f[i][j]=f[i-1][j]*2}$. 这样一来问题就转换为了:在一个矩…
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #include <cstring> #include <cstdlib> #include <iostream> #include <algorithm> #include <cmath> #define N 100100 #define M 50 #defi…
传送门 题意:对于任意一个正整数 n≤100000,如何求出{1, 2,..., n} 的满足若 x 在该子集中,则 2x 和 3x 不能在该子集中的子集的个数(只需输出对 1,000,000,001 取模的结果) 好巧妙的转化啊: 构造一个矩阵,把限制关系转化成矩阵的相邻元素不能同时选 1 3  9  27… 2 6 18 54… 4 12 36 108… 然后愉♂悦的状压DP就可以啦 注意每一个既不被$2$又不被$3$整除的数都可以作为矩阵的第一个元素,还有矩阵不一定填满 #include…
题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于一个矩阵,若我选择了一个数x,则在矩阵内该数的相邻格子都不能选,题目就被转化成了玉米田了,可以用状压DP解决 但是直接做是不对的,比如5就没有出现在这个序列中 所以我们可以构造多个矩阵,用乘法原理统计答案即可 #include<bits/stdc++.h> using namespace std;…