sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 参考资料 https://www.cnblogs.com/webRobot/p/9034079.html 逻辑回归重点: 1.sigmoid函数(…
方法与参数 LogisticRegression类的各项参数的含义 class sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class=…
一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们都知道可以用回归模型来进行回归任务,但如果要利用回归模型来进行分类该怎么办呢?本文介绍的逻辑回归就基于广义线性模型(generalized linear model),下面我们简单介绍一下广义线性模型: 我们都知道普通线性回归模型的形式: 如果等号右边的输出值与左边y经过某个函数变换后得到的值比较贴…
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏.        Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别).        回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率. 逻辑回归--优缺点 优…
前情提要: 通俗地说逻辑回归[Logistic regression]算法(一) 逻辑回归模型原理介绍 上一篇主要介绍了逻辑回归中,相对理论化的知识,这次主要是对上篇做一点点补充,以及介绍sklearn 逻辑回归模型的参数,以及具体的实战代码. 1.逻辑回归的二分类和多分类 上次介绍的逻辑回归的内容,基本都是基于二分类的.那么有没有办法让逻辑回归实现多分类呢?那肯定是有的,还不止一种. 实际上二元逻辑回归的模型和损失函数很容易推广到多元逻辑回归.比如总是认为某种类型为正值,其余为0值. 举个例子…
LR算法作为一种比较经典的分类算法,在实际应用和面试中经常受到青睐,虽然在理论方面不是特别复杂,但LR所牵涉的知识点还是比较多的,同时与概率生成模型.神经网络都有着一定的联系,本节就针对这一算法及其所涉及的知识进行详细的回顾. LogisticRegression 0.前言 LR是一种经典的成熟算法,在理论方面比较简单,很多资料也有详细的解释和推导,但回过头再看LR算法会有很多全新的认识,本节就从LR的引入到原理推导以及其与神经网络的有何联系串联起来,可以加深对这方面知识的理解.本节首先从概率生…
之前在逻辑回归原理小结这篇文章中,对逻辑回归的原理做了小结.这里接着对scikit-learn中逻辑回归类库的我的使用经验做一个总结.重点讲述调参中要注意的事项. 1. 概述 在scikit-learn中,与逻辑回归有关的主要是这3个类.LogisticRegression, LogisticRegressionCV 和logistic_regression_path.其中LogisticRegression和LogisticRegressionCV的主要区别是LogisticRegressio…
ex2data1.txt ex2data2.txt 本次算法的背景是,假如你是一个大学的管理者,你需要根据学生之前的成绩(两门科目)来预测该学生是否能进入该大学. 根据题意,我们不难分辨出这是一种二分类的逻辑回归,输入x有两种(科目1与科目2),输出有两种(能进入本大学与不能进入本大学).输入测试样例以已经本文最前面贴出分别有两组数据. 我们在进行逻辑回归之前,通常想把数据数据更为直观的显示出来,那么我们根据输入样例绘制图像. function plotData(X, y) %PLOTDATA…
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:LogisticRegressionWithSGD和LogisticRegressionWithLBFGS,前者基于随机梯度下降,只支持2分类,后者基于LBFGS优化损失函数,支持多分类. 直接上代码: import org.apache.log4j.{Level, Logger} import org.apa…
来自:刘建平 1.概述 在scikit-learn中,与逻辑回归有关的主要有3个类.LogisticRegression, LogisticRegressionCV 和 logistic_regression_path.其中LogisticRegression 和 LogisticRegressionCV的主要区别是LogisticRegressionCV使用了交叉验证来选择正则化系数C.而LogisticRegression需要自己每次指定一个正则化系数.除了交叉验证,以及选择正则化系数C以外…